We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Self-Destructing Battery Could Power Transient Medical Devices

By HospiMedica International staff writers
Posted on 24 Aug 2016
A self-destructing lithium-ion battery capable of delivering 2.5 volts of energy dissipates in 30 minutes when dropped in water, claims a new study.

Developed by researchers at Iowa State University (Ames, USA) and the Ames Laboratory (IA, USA), the transient battery is about 1X5X6 millimeters, and is made up of eight layers of a degradable polymer composite, which include an anode, a cathode, and an electrolyte separator, wrapped up in two layers of a polyvinyl alcohol-based polymer. The batteries are based on Lithium-ion (Li-ion) technology, taking advantage of a close variation of the active materials used in conventional Li-ion batteries, and can achieve and maintain a potential of 2.5 Volts.

Image: A working transient battery generating 2.5 Volts (Photo courtesy of Ashley Christopherson / Iowa State University).
Image: A working transient battery generating 2.5 Volts (Photo courtesy of Ashley Christopherson / Iowa State University).

When dropped into water, the polymer casing swells, breaking apart the two electrodes and dissolving away. The battery also contains insoluble nanoparticles that do not degrade, but disperse as the casing breaks apart, with dissolution of the soluble components in approximately 30 minutes. According to the researchers, fabricating electrodes with higher area density, or connecting several battery cells in parallel could significantly improve battery performance for higher power consuming applications, but at the price of a longer time to deconstruct.

At the moment, a single battery cell is capable to supply enough power to power a basic calculator for a short period of time. More advanced fabrication techniques could also improve the overall efficiency and performance of the battery cells, while transiency rate could be controlled via optimization of the nano/microstructure of electrodes and substrate. The study describing the new transient power technology was published on June 22, 2106, in the Journal of Polymer Science, Part B: Polymer Physics.

“Unlike conventional electronics that are designed to last for extensive periods of time, a key and unique attribute of transient electronics is to operate over a typically short and well-defined period, and undergo fast and, ideally, complete self-deconstruction and vanish when transiency is triggered,” concluded lead author assistant professor of mechanical engineering Reza Montazami, PhD, of Iowa State University and the Ames Laboratory. “The presented proof of concept has paramount potentials in military and hardware security applications.”

Transient electronics have a wide range of potential applications including those in healthcare, biomedical devices, environmental sensing/monitoring, green electronics, and military and homeland security.

Related Links:
Iowa State University
Ames Laboratory


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Vital Signs Monitor
Aurus 10

Latest Health IT News

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Strategic Collaboration to Develop and Integrate Generative AI into Healthcare

AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity