We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Machine Learning Model Accurately Identifies High-Risk Surgical Patients

By HospiMedica International staff writers
Posted on 18 Jul 2023

Prior to the COVID-19 pandemic, complications occurring 30 days post-surgery were the third leading cause of death worldwide, claiming approximately 4.2 million lives annually. Recognizing patients at high risk for post-surgical complications is crucial to improving survival rates and reducing healthcare costs. Researchers have now employed machine learning to develop and implement an efficient, adaptable model for identifying hospitalized patients at high risk for post-surgical complications.

Researchers and physicians at the University of Pittsburgh (Pittsburgh, PA, USA) and UPMC (Pittsburgh, PA, USA) developed this model by training the algorithm on the medical records of over 1.25 million surgical patients. The focus of the model was on mortality and the occurrence of major cerebral or cardiac events, such as stroke or heart attack, following surgery. The model was then validated using the records of another 200,000 surgical patients from UPMC. After validation, the model was implemented across 20 UPMC hospitals. Each morning, the program reviews the electronic medical records of patients scheduled for surgery and flags those identified as high risk. This alert enables clinical teams to improve care coordination and introduce prehabilitation measures before surgery, such as healthier lifestyle choices or a referral to the UPMC Center for Perioperative Care, thus lowering the risk of complications. Clinicians can also activate the model on demand at any time.


Image: Accurate and flexible ML model predicts patients at high-risk for complications after surgery (Photo courtesy of Freepik)
Image: Accurate and flexible ML model predicts patients at high-risk for complications after surgery (Photo courtesy of Freepik)

Additionally, the research team compared their model with the industry standard, the American College of Surgeon’s National Surgical Quality Improvement Program (ACS NSQIP), to further gauge its effectiveness. The ACS NSQIP, used at hospitals nationwide, requires manual input of patient information by clinicians and is unable to make predictions if data is missing. The researchers found their model to be more effective at identifying high-risk patients than the ACS NSQIP. As the model continues to be fine-tuned and developed, the researchers plan to train the program to predict the likelihood of other complications, such as sepsis and respiratory issues, that often result in prolonged hospital stays after surgery.

“We designed our model with the health care worker in mind,” said Aman Mahajan, M.D., Ph.D., M.B.A., chair of Anesthesiology and Perioperative Medicine, Pitt School of Medicine, and director of UPMC Perioperative and Surgical Services. “Since our model is completely automated and can make educated predictions even if some data are missing, it adds almost no additional burden to clinicians while providing them a reliable and useful tool.”

Related Links:
University of Pittsburgh 
UPMC 


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Family Practice Exam Table
2100M7
New
Steam Sterilizer
S100

Latest AI News

Innovative Risk Score Predicts Heart Attack or Stroke in Kidney Transplant Candidates

AI Algorithm Detects Early-Stage Metabolic-Associated Steatotic Liver Disease Using EHRs