We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Top 4 Trends Impacting Use of VR in Surgery

By HospiMedica International staff writers
Posted on 21 Nov 2017
Over the next few years, the market for virtual reality technologies in healthcare could reach almost USD 1 billion dollars as the use of refined virtual reality systems can help overcome the limitations of advanced surgery procedures. These are the latest findings of Kalorama Information, (New York, NY, USA), an independent medical market research firm.

The principles and technologies of Virtual reality (VR) and augmented reality (AR) have already been introduced into surgical navigation, RAS, and radiotherapy systems. They usually find application in the utilization of pre- and intra-operative medical imaging for constructing simulations or models of patient anatomy for the navigation of surgical instruments, intra-operative segmentation, labeling of key anatomical structures, or targeted delivery of radiation. However, navigation, RAS and radiotherapy platform vendors are yet to incorporate VR/AR headsets or fully immersive qualities into their systems. Nevertheless, a number of surgical platforms are already incorporating capabilities analogous to VR and AR technology and are moving closer to AR image injection and more interactive and immersive virtual models.

According to Kalorama, there are four reasons why virtual reality is required in surgery:

Laparoscopy and endoscopy are performed without the natural line of sight for the surgeon available in open surgery. The small incisions and reliance on endoscopic or laparoscopic feeds limit surgeons to a narrow visual frame of reference.

Surgical navigation or image-guided surgery (IGS) systems already utilize virtual models for navigation and to guide surgical intervention. However, in some cases, they are limited by the resolution or parameters of the virtual environment (VE), whether two-dimensional (2D) images or lack of segmentation.

Robot-assisted surgery systems face problems inherent to both laparoscopic/endoscopic and IGS systems such as a limited visual frame of reference at the surgical site or inadequate resolution for precise navigation and intervention.

Over the past several decades, there has been an improvement in radiotherapy precision with the latest intensity-modulated (IMRT) and image-guided radiation therapy (IGRT) systems using image guidance and sophisticated delivery models. These systems aim at delivering optimal dosage within the tumor target while simultaneously minimizing exposure to surrounding tissue through precise patient alignment and tracking of patient movement relative to the simulation or treatment model.

Related Links:
Kalorama Information


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Video Laryngoscope
SH-VL1

Latest Business News

Johnson & Johnson Acquires Cardiovascular Medical Device Company Shockwave Medical

Mindray to Acquire Chinese Medical Device Company APT Medical

Olympus Acquires Korean GI Stent Maker Taewoong Medical