We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Caterpillar-Like Soft Magnetic Millirobot Could Perform Minimally Invasive Surgery

By HospiMedica International staff writers
Posted on 16 Sep 2022

The term “robot” brings to mind complicated machinery working in factories or roving on other planets. But “millirobots” might change that. They are robots about as wide as a finger that someday could deliver drugs or perform minimally invasive surgery. Some soft millirobots are already being developed for a variety of biomedical applications, thanks to their small size and ability to be powered externally, often by a magnetic field. Their unique structures allow them to inch or roll themselves through the bumpy tissues of our gastrointestinal tract, for example. They could someday even be coated in a drug solution and deliver the medicine exactly where it’s needed in the body. However, most millirobots are made of non-degradable materials, such as silicone, which means they would have to be surgically removed if used in clinical applications. In addition, these materials aren’t that flexible and do not allow for much fine-tuning of the robot’s properties, limiting their adaptability. Now, researchers have developed a soft, biodegradable, magnetic millirobot inspired by the walking and grabbing capabilities of insects.

Researchers at the University of Hong Kong (Hong Kong, China) set out to create a millirobot out of soft, biodegradable materials that can grab, roll and climb, but then easily dissolve away after its job is done. As a proof of concept, the researchers created a millirobot using a gelatin solution mixed with iron oxide microparticles. Placing the material above a permanent magnet caused the microparticles in the solution to push the gel outward, forming insect-like “legs” along the lines of the magnetic field. Then, the hydrogel was placed in the cold to make it more solid. The final step was to soak the material in ammonium sulfate to cause cross-linking in the hydrogel, making it even stronger. Changing various factors, such as the composition of the ammonium sulfate solution, the thickness of the gel or the strength of the magnetic field allowed the researchers to tune the properties. For example, placing the hydrogel farther away from the magnet resulted in fewer, but longer, legs.


Image: The soft magnetic millirobot can fold, roll and grab with its caterpillar-inspired legs (Photo courtesy of American Chemical Society)
Image: The soft magnetic millirobot can fold, roll and grab with its caterpillar-inspired legs (Photo courtesy of American Chemical Society)

Because the iron oxide microparticles form magnetic chains within the gel, moving a magnet near the hydrogel caused the legs to bend and produce a claw-like grasping motion. In experiments, the material gripped a 3D-printed cylinder and a rubber band and carried each one to new locations. In addition, the researchers tested the millirobot’s ability to deliver a drug by coating it in a dye solution, then rolling it through a stomach model. Once at its destination, the robot unfurled and released the dye with the strategic use of magnets. Since it’s made using water-soluble gelatin, the millirobot easily degraded in water in two days, leaving behind only the tiny magnetic particles. The researchers say that the new millirobot could open up new possibilities for drug delivery and other biomedical applications.

Related Links:
University of Hong Kong 


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
MRI System
Ingenia Prodiva 1.5T CS
New
Family Practice Exam Table
2100M7

Latest Surgical Techniques News

Laser Patterning Technology Revolutionizes Stent Surgery for Cardiovascular Diseases

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Second Generation Robotic Platform Introduces Haptic Feedback and Dual-Mode Articulation