We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Collaborative Magnetic Microrobots Open New Horizons for Promising Biomedical Applications

By HospiMedica International staff writers
Posted on 25 Oct 2023

Surgeons often find it very difficult to reach a particular part of the body that requires surgery. But that is expected to change in the future when a couple of robots smaller than a grain of salt could go inside the body and work together to perform surgery involving all kinds of complex tasks.

For the first time ever, scientists at the Surgical Robotics Laboratory of the University of Twente (Enschede, Netherlands) have managed to make two microrobots work together to pick up, transport, and assemble inanimate objects in a three-dimensional setting. Remarkably, these magnetic microrobots, each just one millimeter in size, were able to handle tasks like lifting and arranging cubes, and they did so within a 3D environment.


Image: Scientists have achieved a breakthrough in collaborative magnetic microrobotics (Photo courtesy of University of Twente)
Image: Scientists have achieved a breakthrough in collaborative magnetic microrobotics (Photo courtesy of University of Twente)

Making the magnetic microrobots work together proved to be a huge challenge. One hurdle was that, like regular magnets, these tiny magnetic robots have the tendency to stick together when they come too close. However, the researchers used this natural attraction to their advantage. By developing a specialized controller, they were able to not only guide the movements of the individual robots but also control how they interact with one another. Because these microrobots are biocompatible and can be maneuvered in tough-to-reach or even confined spaces, they hold considerable potential for use in biomedical research and applications.

“It’s almost like magic,” said Franco Piñan Basualdo, a postdoctoral researcher at the Surgical Robotics Laboratory. “We can remotely manipulate biomedical samples without contaminating them. This could improve existing procedures and open the door to new ones.”

Related Links:
University of Twente 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Pediatric Cart
UXGLA-9PEDS
New
Single-Use Instrumentation
FASTPAK

Latest Surgical Techniques News

Laser Patterning Technology Revolutionizes Stent Surgery for Cardiovascular Diseases

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Second Generation Robotic Platform Introduces Haptic Feedback and Dual-Mode Articulation