We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

COVID-19 Patients Have Low Oxygen Levels Due to Damaged Blood Cells, Finds Study

By HospiMedica International staff writers
Posted on 08 Jul 2020
A report by Reuters has stated that the damage caused by the coronavirus to the membranes of red blood cells that carry oxygen could explain why several COVID-19 patients have alarmingly low oxygen levels.

Researchers from the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) and Columbia University (New York, NY, USA) conducted a study combining state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. The researchers found that the RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. However, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume.

Illustration
Illustration

According to the researchers, the findings suggested a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. The increases in RBC glycolytic metabolites were consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen.

"Since red cells circulate for up to 120 days, this could also help explain why it can take months to recover from the virus ... until enough new red cells without this damage are made and circulate," senior researcher Angelo D'Alessandro of the University of Colorado Anschutz Medical Campus told Reuters.

Related Links:
University of Colorado Anschutz Medical Campus
Columbia University



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Plasma Freezer
iBF125-GX
New
Transducer Covers
Surgi Intraoperative Covers

Latest COVID-19 News

Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles

World's First Inhalable COVID-19 Vaccine Approved in China

COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles