We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Scientists Decode How Coronavirus Evades Host Cell Defense

By HospiMedica International staff writers
Posted on 20 Jul 2020
Scientists have determined how the pandemic coronavirus SARS-CoV-2 inhibits the synthesis of proteins in infected cells and shown that it effectively disarms the body’s innate immune system.

Although its name is relatively unspecific and indeed opaque, the Nonstructural Protein 1 (Nsp1) encoded by the coronavirus SARS-Cov-2, which is responsible for the current pandemic, has now been shown to have a devastating effect on host cells. Nsp1 is in fact one of the central weapons used by the virus to ensure its own replication and propagation in human hosts. Nsp1 was identified as a virulence factor following the outbreak of the related SARS coronavirus nearly 20 years ago, when it was shown to inhibit protein synthesis in infected cells. Now scientists from Ludwig Maximilian University (Munich, Germany) and University Hospital of Ulm (Ulm, Germany) have discovered what makes Nsp1 so potent and have describe the protein’s mode of action in detail in their paper.

Image: Devastating effect: how virus protein Nsp1 binds to the ribosome (Photo courtesy of Beckmann Lab)
Image: Devastating effect: how virus protein Nsp1 binds to the ribosome (Photo courtesy of Beckmann Lab)

In all biological cells, the task of synthesizing proteins is performed by complex molecular machines known as ribosomes. Ribosomes interact with messenger RNAs (mRNAs), which serve as blueprints for protein synthesis, and translate the nucleotide sequence of each mRNA into the amino-acid sequence of the corresponding protein. The amino-acid sequence in turn determines the shape and biological function of each individual protein. Ribosomes consist of two distinct subunits, and Nsp1 binds to the smaller one-the 40S subunit. The mRNA initially binds to the small subunit, prior to the latter’s interaction with the 60S subunit to form the cavity through which the mRNA is then threaded. The new study shows that one end of the Nsp1 protein interacts with the 40S subunit in such a way that it prevents binding of the mRNA. With the aid of high-resolution cryo-electron microscopy, the scientists have shown in three-dimensional detail how Nsp1 binds tightly to a specific pocket in the small ribosomal subunit and inhibits the formation of functional ribosomes. Further experiments revealed that Nsp1 can also interact with specific configurational states of the fully assembled ribosome.

In addition, the scientists were able to show that the shutdown of protein synthesis leads to an almost complete collapse of one of the body’s major lines of defense against the virus. Nsp1 inactivates the innate immune response by inhibiting a vital signaling cascade. The scientists hope that the insights gained will make it possible to find ways to neutralize the novel coronavirus, and thus mitigate the severity of the respiratory disease that it causes. One potential approach, they say, would be to develop a molecule that masks the viral protein’s binding site. This should be feasible, since the Nsp1-binding pocket itself appears not to have an essential role in ribosomal function.

Related Links:
Ludwig Maximilian University
University Hospital of Ulm



Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Hospital Bed
Alphalite
New
Medical-Grade POC Terminal
POC-821

Latest COVID-19 News

Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles

World's First Inhalable COVID-19 Vaccine Approved in China

COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles