We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Protein-Based Biosensors That Glow When Mixed With SARS-CoV-2 Components or Antibodies Could Enable Faster COVID-19 Testing

By HospiMedica International staff writers
Posted on 01 Feb 2021
Scientists have created a new way to detect the proteins that make up the SARS-CoV-2 virus, as well as antibodies against it by designing protein-based biosensors that glow when mixed with components of the virus or specific COVID-19 antibodies.

The breakthrough achieved by scientists at UW Medicine (Seattle, WA, USA) could enable faster and more widespread testing in the near future. To diagnose SARS-CoV-2 infection, most medical laboratories currently rely on a technique called RT-PCR, which amplifies genetic material from the virus so that it can be seen. This technique requires specialized staff and equipment. It also consumes lab supplies that are now in high demand all over the world.

Image: Illustration of a biosensor detecting a targeted molecule and glowing (Photo courtesy of Ian Haydon)
Image: Illustration of a biosensor detecting a targeted molecule and glowing (Photo courtesy of Ian Haydon)

In an effort to directly detect coronavirus in patient samples without the need for genetic amplification, a team of UW researchers used computers to design new biosensors. These protein-based devices recognize specific molecules on the surface of the virus, bind to them and then emit light through a biochemical reaction. The same team of UW researchers also created biosensors that glow when mixed with COVID-19 antibodies. They showed that these sensors do not react to other antibodies that might also be in the blood, including those that target other viruses. This sensitivity is important for avoiding false-positive test results.

“We have shown in the lab that these new sensors can readily detect virus proteins or antibodies in simulated nasal fluid or donated serum, said David Baker, professor of biochemistry and director of the Institute for Protein Design at UW Medicine, who led the study. “Our next goal is to ensure they can be used reliably in a diagnostic setting. This work illustrates the power of de novo protein design to create molecular devices from scratch with new and useful functions.”

Related Links:
UW Medicine


Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Cannulating Sphincterotome
TRUEtome
New
Blanket Warming Cabinet
EC250

Latest COVID-19 News

Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles

World's First Inhalable COVID-19 Vaccine Approved in China

COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles