We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.


Download Mobile App
Recent News COVID-19 AI Critical Care Surgical Techniques Women's Health Patient Care Health IT Business

Perry Health

Ultrapotent Bispecific Antibodies That Can Simultaneously Bind to Two Different Antigens Neutralize SARS-CoV-2 Variants

By HospiMedica International staff writers
Posted on 15 Sep 2021
Researchers have developed bispecific antibodies - antibodies that can simultaneously bind to two different antigens - that target multiple regions of the SARS-CoV-2 spike protein and neutralize virus variants of concern.

The team of researchers from the National Institute of Allergy and Infectious Diseases (NIAID; Bethesda, MD, USA) isolated monoclonal antibodies targeting the SARS-CoV-2 spike protein from donors who had recovered from COVID-19. Pairs of potent monoclonal antibodies that bound distinct regions of the spike protein were combined into bispecific antibodies. These bispecific antibodies prevented SARS-CoV-2 variants of concern from infecting cells in vitro and prevented disease in hamsters infected with SARS-CoV-2.


Currently, COVID-19 antibody treatments work by sending in a cocktail of individual monoclonal antibodies to target various parts of the virus. However, the NIAID researchers showed that combining some of these monoclonal antibodies into a new bispecific antibody can create stronger antibodies that are more potent than the monoclonal cocktails - one bispecific antibody they tested, in particular, was 100 times more potent against the virus than a cocktail of its monoclonal parents.

Two of the bispecific antibodies neutralized the original virus as well as the Alpha, Beta, Gamma, and Delta variants. In hamsters infected with SARS-CoV-2, two of the bispecific antibodies protected the animals from clinical disease. The researchers developed the bispecific antibodies from a pool of 216 monoclonal antibodies that target SARS-CoV-2 from convalescent COVID-19 patients, screening them for potency against the virus. The bispecific antibodies may be especially effective against the variants because they bind to non-overlapping areas of the viral spike and have limited contact with areas on the spike where variant mutations have occurred.

“In the face of rapidly emerging SARS-CoV-2 variants that challenge our efforts to end the pandemic, our findings support the further exploration of bispecific antibodies that strategically combine antibody pairs as new tools to treat COVID-19,” stated Hyeseon Cho from the team of NIAID researchers.

Related Links:

Latest COVID-19 News