We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Imminent Danger of Drug-Resistant Malaria Spreading from Myanmar

By HospiMedica International staff writers
Posted on 03 Mar 2015
Resistance of the malaria parasite P. falciparum to artemisinin has been spreading and is on the verge of entering India, according to a new study.

Researchers at Mahidol University (Bangkok, Thailand), the Defence Services Medical Research Center (Naypyitaw, Myanmar), the Texas Biomedical Research Institute (San Antonio, TX, USA), Oxford University (United Kingdom), and other institutions conducted a cross-sectional survey at 55 malaria treatment centers in Myanmar, as well as in relevant border regions in Thailand and Bangladesh, to assess the spread of artemisinin-resistant P. falciparum by determining the relative prevalence of parasites carrying K13-propeller mutations.

Image: Global malaria death rates (Photo courtesy of the WHO Global Malaria Program).
Image: Global malaria death rates (Photo courtesy of the WHO Global Malaria Program).

The researchers then used two geostatistical models to produce predictive maps of the estimated prevalence of mutations region across Myanmar. They found that 39% of the samples carried 26 different K13-propeller mutations, including 9 mutations not previously described in Southeast Asia. In 70% of the administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. In Homalin (Sagaing Region), which is just 25 km from the Indian border, 47% of 45 parasite samples carried mutations. The study was published in the February 2015 issue of Lancet Infectious Diseases.

“Myanmar is considered the frontline in the battle against artemisinin resistance as it forms a gateway for resistance to spread to the rest of the world,” said Charles Woodrow, MD, of the Mahidol-Oxford Tropical Medicine Research Unit. “With artemisinins we are in the unusual position of having molecular markers for resistance before resistance has spread globally. The more we understand about the current situation in the border regions, the better prepared we are to adapt and implement strategies to overcome the spread of further drug resistance.”

“Drug-resistant malaria parasites in the 1960’s originated in Southeast Asia, and from there spread through Myanmar to India and then to the rest of the world, where it killed millions of people,” said Prof. Mike Turner, PhD, head of infection and immunobiology at the Wellcome Trust (London, United Kingdom). “The new research shows that history is repeating itself with parasites resistant to artemisinin drugs, the mainstay of modern malaria treatment, now widespread in Myanmar. We are facing the imminent threat of resistance spreading into India, with thousands of lives at risk.”

Artemisinin-based combination therapies were introduced in the mid-1990s, when there was an imminent prospect of untreatable malaria in Southeast Asia, where resistance to all available antimalarial drugs had developed. History could be repeating itself; while chloroquine probably saved hundreds of millions of lives, resistance was discovered in 1957 around the border between Cambodia and Thailand, reaching Africa 17 years later.

Related Links:

Mahidol University
Texas Biomedical Research Institute
Oxford University



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Vertebral Body Replacement System
Hydrolift
New
Blanket Warming Cabinet
EC250

Latest Critical Care News

Novel Medical Device Inventions Use Light to Monitor Blood Pressure and Track Cancer Treatment Progress

AI Improves Treatment of UTIs and Helps Address Antimicrobial Resistance

Ablation Treatment Better Than Medication for Heart Attack Survivors