We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Injectable Viscous Hydrogel Stops Uncontrolled Bleeding

By Daniel Beris
Posted on 29 Nov 2016
A new study describes a novel embolic agent for endovascular embolization procedures that has a hemostatic activity comparable to that of metallic coils, the current gold standard.

Developed by researchers at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), Brigham and Women’s Hospital (Boston, MA, USA), Harvard Medical School (HMS; Boston, MA, USA), and other institutions, the shear-thinning biomaterial (STB) is made up of a nanocomposite hydrogel that also contains gelatin and silicate nanoplatelets.

Image: An injectable shear-thinning biomaterial aids endovascular embolization (Photo courtesy of Ali Khademhosseini/ HMS).
Image: An injectable shear-thinning biomaterial aids endovascular embolization (Photo courtesy of Ali Khademhosseini/ HMS).

The nanocomposite STBs are injected through clinical catheters and needles in a viscous, toothpaste-like consistency. Once in place, the biomaterial expands and hardens, fully occluding the vasculature. It subsequently remains at the site of injection (without fragmentation) until it undergoes natural degradation over time. Advantages include rapid delivery, in vivo stability, and independent occlusion that do not rely on intrinsic thrombosis. The study was published on November 16, 2016, in Science Translational Medicine.

“Current therapies that try to occlude blood vessels and stop bleeding in cases of internal bleeding do not work for a major segment of population that are on anticoagulant medication, or have disorders which prevents their blood from clotting,” said Professor Ali Khademhosseini, PhD, of HMS and Brigham and Women's Hospital. “Our material provides a solution to this issue, and allows for a new standard of care that replaces metallic coils, which are expensive and complicated to use.”

Endovascular embolization of damaged blood vessels can generate better patient outcomes and minimize the need for repeat procedures. However, many embolic materials, such as metallic coils or liquid agents, are associated with limitations and complications such as breakthrough bleeding, coil migration, coil compaction, recanalization, adhesion of the catheter to the embolic agent, or toxicity.

Related Links:
Massachusetts Institute of Technology
Brigham and Women’s Hospital
Harvard Medical School

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80

Latest Critical Care News

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

First-Of-Its-Kind Dissolvable Stent to Improve Outcomes for Patients with Severe PAD