We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Novel Pacemaker Matches Cardiac Rhythm to Breathing

By HospiMedica International staff writers
Posted on 28 Nov 2019
A new study describes how a respiratory modulated heart rate (RMH) pacemaker can radically improve the efficiency at which the heart supplies blood to the body.

Researchers at the University of Bristol (United Kingdom), the University of Auckland (New Zealand), the University of Bath (United Kingdom), and other institutions induced heart failure (HF) in Wistar rats by ligation of their left anterior descending coronary artery. After two weeks, the rats were randomly assigned to remain unpaced, to monotonic pacing, and to RMH pacing, with both paced groups guided to the same average heart rate. Cardiac function was assessed non‐invasively using echocardiography before and after two weeks of daily pacing, at a time when pacing was turned off.

Image: Professor Alain Nogaret (L) who designed the pacemaker that resynchronizes respiration and cardiac rhythms (Photo courtesy of the University of Bath)
Image: Professor Alain Nogaret (L) who designed the pacemaker that resynchronizes respiration and cardiac rhythms (Photo courtesy of the University of Bath)

The results revealed that RMH increased cardiac output by about 20% compared to monotonic pacing. This improvement in cardiac output was associated with an increase in stroke volume and improvement in circumferential strain. Increases in contractility and coronary blood flow were seen during variable pacing to mimic RMH. As a result, in rats with left ventricular dysfunction, chronic RMH pacing improved cardiac function through improvements in systolic function. And as the improvements were made with pacing switched off, the researchers suggest that RMH pacing causes reverse‐remodeling. The study was published on November 14, 2019, in Journal of Physiology.

“By managing to recreate neurons on a chip, we have developed a pacemaker that restores natural heart rate variability, instead of simply working at a steady rate,” said co-senior author Professor Alain Nogaret, PhD, of the University of Bath department of physics, who led the design of the nonlinear “smart” bionic pacemaker. “That’s the major advantage of this work, and why we hope to be able to treat heart failure in patients in the years to come.”

“Within two weeks there was a twenty percent increase in blood pumped by the heart, which was not the case when we used conventional pacemakers,” said lead author Erin O’Callaghan, PhD, of the University of Bristol school of biomedical sciences. “The cardiac output as well as the stroke volume shot up in the rats who had a pacemaker set to respiratory sinus arrhythmia, compared to those using the other monotonic pacing.”

Most automatic pacemakers generate a metronome-like rhythm when the patient is at rest, irrespective of the body’s other operations. But normal heartbeat is a dynamic phenomenon; with every intake of breath, it can be felt to speed up, only to slow down with exhalation, a phenomenon called respiratory sinus arrhythmia. The new RMH pacemaker adapts the rate of impulse generation to breathing, allowing more blood to be pushed out when more blood is received by the heart during inhalation, and less when the heart is being pushed in by the chest collapse that accompanies exhalation.

Related Links:
University of Bristol
University of Auckland
University of Bath



Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Documentation System For Blood Banks
HettInfo II
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+

Latest Critical Care News

AI-Powered Wearable Device Revolutionizes Gut Health Diagnosis

Innovative Ventricular Assist Device Provides Long-Term Support for Advanced Heart Failure Patients

Novel Algorithms Predict Cardiovascular Outcomes at Point-Of-Care Using ECG Data