We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Surgical Meshes Impregnated with Manuka Honey Fight Infections

By HospiMedica International staff writers
Posted on 17 Dec 2019
Sandwiching tiny amounts of Manuka honey between surgical mesh layers can provide protection against bacterial infection for up to three weeks, according to a new study.

Developed by researchers at Ulster University (Newtownabbey, United Kingdom), the University of Leeds (United Kingdom), Newcastle University (United Kingdom), and other institutions, the surgical mesh was created via layer-by-layer (LBL) nanotechnology assembly by sandwiching eight layers each of negatively charged Manuka honey nanolayers and a positively charged biomimetic electrospun poly(ε-caprolactone) polymer. Each layer was just 10-20 nm in thickness.

Image: Dr. Piergorgio Gentile and Manuka honey (Photo courtesy of Newcastle University)
Image: Dr. Piergorgio Gentile and Manuka honey (Photo courtesy of Newcastle University)

Different cell lines, including human immortalized and primary skin fibroblasts, and primary endothelial cells, were exposed to the mesh to confirm membrane cytocompatibility. The Manuka honey meshes were then exposed to various Gram-negative and Gram-positive bacteria responsible for infections in the body, such as Staphylococcus, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli. The results showed that antimicrobial MH activity was dependent on the concentration used, and the strains tested. The study was published on December 4, 2109, in Frontiers in Bioengineering and Biotechnology.

“Honey has been used to treat infected wounds for thousands of years, but this is the first time it has been shown to be effective at fighting infection in cells from inside the body,” said senior author Piergorgio Gentile, PhD, of Newcastle University. “Similarly layered antibiotic-releasing coatings to protect implants against bacterial infection have been judged as failing to provide durable protection, as it could encourage the development of drug resistant bacterial strains.”

Manuka (Leptospermum) honey is made from the tree species Leptospermum, found in New Zealand and Australia. The antibacterial effect of Manuka honey is due to the presence of methylglyoxal (MGO), which forms from the compound dihydroxyacetone (DHA) present in nectar, and converted into MGO during the ripening of honey. The level of MGO in Manuka honey is 100 or more times higher than in other types of honey.

Related Links:
Ulster University
University of Leeds
Newcastle University



Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multilevel Self-Loading Stretcher
CARRERA XL

Latest Critical Care News

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants