We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Peptide-Based Wound Dressing Kills Bacteria Efficiently

By HospiMedica International staff writers
Posted on 19 Aug 2020
An advanced wound dressing that contains cellulose membranes with bifunctional peptides shows potent antimicrobial activity, according to a new study.

Developed at the Swiss Federal Laboratories for Materials Science and Technology (Empa; Dübendorf, Switzerland), the dressings, made from plant‐derived cellulose fibers with a diameter of less than one micrometer, are electrospun into a delicate multi-layered, three-dimensional (3D) fabric that also contains the polymer polyurethane. The cellulose membrane contains a bifunctional peptide which combines an antimicrobial peptide (AMP) and a cellulose binding peptide (CBP), with tight control over peptide concentrations.

Image: Functionalized cellulose membranes can kill bacteria in wounds (Photo courtesy of Empa)
Image: Functionalized cellulose membranes can kill bacteria in wounds (Photo courtesy of Empa)

The fiber scaffold of the fibroblast cytocompatible membranes are saturated with such bifunctional peptides, affecting bacteria via multiple modes of action, reducing evolutionary pressure selecting for antibiotic resistance. In cell cultures, the dressing exhibited a log4 reduction against Staphylococcus aureus, and a log1 reduction against Pseudomonas aeruginosa. In addition, using the cell adhesive CBP induced a 2.2‐fold increase in cell spreading, compared to pristine cellulose. The study was published in the July 2020 issue of Advanced Healthcare Materials.

“In bacterial cultures, over 99.99% of the germs were killed by the peptide-containing membranes. In future, the antimicrobial membranes will be equipped with additional functions,” said co-senior author Katharina Maniura-Weber, PhD, of the Empa Biointerfaces lab. “The peptides might, for instance, be functionalized with binding sites that enable the controlled release of further therapeutic substances.”

AMPs are potent, broad spectrum therapeutic agents that have been shown to kill both Gram positive and gram negative bacteria, enveloped viruses, fungi, and even some cancerous cells. Unlike antibiotic drugs, AMPs appears to destabilize biological membranes, can form transmembrane channels, and may have the ability to function as immunomodulators by altering host gene expression, inducing chemokine production, promoting wound healing, and modulating the responses of dendritic cells and cells of the adaptive immune response.

Related Links:

Swiss Federal Laboratories for Materials Science and Technology


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Autoclavable Camera System
Precision AC

Latest Critical Care News

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants