We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

AI Identifies Noncancerous Thyroid Nodules on Ultrasound Images and Reduces Biopsies

By HospiMedica International staff writers
Posted on 13 Jun 2022

Thyroid nodules are very common. Fine needle aspiration biopsy is used to diagnose thyroid cancer. However most biopsies produce benign (non-cancerous) results and are potentially avoidable. Now, a new study has found that artificial intelligence (AI) can be used to identify thyroid nodules seen on thyroid ultrasound that are very unlikely to be cancerous, reducing a large number of unnecessary biopsies.

In the new study, researchers at the University of Colorado Anschutz Medical Campus (Aurora, CO, USA) used machine learning, a type of AI, to analyze ultrasound images of thyroid nodules. Machine learning is the process of using mathematical models of data to help a computer learn without direct instruction. More than 30,000 images from 621 thyroid nodules were used to train the machine-learning model that classifies thyroid nodules as “cancer” or “no cancer.” The model was tested on a different set of 145 nodules collected at another healthcare system. The AI-based model achieved a sensitivity (ability to not miss cancer) of 97%, and a specificity (ability to correctly identify a cancer) of 61%.


Image: AI can be used to identify benign thyroid nodules and reduce unnecessary biopsies (Photo courtesy of Pexels)
Image: AI can be used to identify benign thyroid nodules and reduce unnecessary biopsies (Photo courtesy of Pexels)

“This study demonstrates that the ultrasound-based AI classifier of thyroid nodules achieves sensitivity comparable to that of thyroid biopsy with fine needle aspiration,” said study lead researcher Nikita Pozdeyev, M.D., Ph.D., of the University of Colorado Anschutz Medical Campus.

“We believe this is a good next step to improving patient care and avoiding unnecessary procedures,” he said. He noted that prospective clinical trials are needed before this tool can be accepted as a standard of care.

“We demonstrated that using AI analysis of ultrasound images to rule out thyroid cancer and avoid biopsy is definitely possible,” he said. “This technology could assist radiologists and endocrinologists in choosing which thyroid nodules should undergo biopsy, especially those in the community who may not review a large number of thyroid ultrasound images.”

Related Links:
University of Colorado Anschutz Medical Campus 


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Vertebral Body Replacement System
Hydrolift
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Latest Critical Care News

Ablation Treatment Better Than Medication for Heart Attack Survivors

Cranial Accelerometry Headset Enables Timely and Accurate Prehospital Detection of LVO Strokes

Ingestible Capsule Pump Drugs Directly into Walls of GI Tract