We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Wearable Device with Stretchable Skin-Like Polymer Sensor Monitors Tumor Size

By HospiMedica International staff writers
Posted on 19 Sep 2022

Each year researchers test thousands of potential cancer drugs on mice with subcutaneous tumors. Few make it to human patients, and the process for finding new therapies is slow because technologies for measuring tumor regression from drug treatment take weeks to read out a response. The inherent biological variation of tumors, the shortcomings of existing measuring approaches, and the relatively small sample sizes make drug screenings difficult and labor-intensive. In some cases, the tumors under observation must be measured by hand with calipers. However, the use of metal pincer-like calipers to measure soft tissues is not ideal, and radiological approaches cannot deliver the sort of continuous data needed for real-time assessment. Now, engineers have created a small, autonomous device with a stretchable and flexible sensor that can be adhered to the skin to measure the changing size of tumors below. The non-invasive, battery-operated device is sensitive to one-hundredth of a millimeter (10 micrometers) and can beam results to a smartphone app wirelessly in real time with the press of a button.

The device – dubbed FAST for “Flexible Autonomous Sensor measuring Tumors” – was developed by engineers at Stanford University (Stanford, CA, USA) and represents a wholly new, fast, inexpensive, hands-free, and accurate way to test the efficacy of cancer drugs. On a grander scale, it could lead to promising new directions in cancer treatment. FAST can detect changes in tumor volume on the minute-timescale, while caliper and bioluminescence measurements often require weeks-long observation periods to read out changes in tumor size.


Image: The FAST system measures tumor size regression (Photo courtesy of Stanford University)
Image: The FAST system measures tumor size regression (Photo courtesy of Stanford University)

FAST’s sensor is composed of a flexible and stretchable skin-like polymer that includes an embedded layer of gold circuitry. The sensor is connected to a small electronic backpack designed by the Stanford engineers. The device measures the strain on the membrane – how much it stretches or shrinks – and transmits that data to a smartphone. Using the FAST backpack, potential therapies that are linked to tumor size regression can quickly and confidently be excluded as ineffective or fast-tracked for further study. The breakthrough is in FAST’s flexible electronic material. Coated on top of the skin-like polymer is a layer of gold, which, when stretched, develops small cracks that change the electrical conductivity of the material. Stretch the material and number of cracks increases, causing the electronic resistance in the sensor to increase as well. When the material contracts, the cracks come back into contact and conductivity improves.

Based on studies with mice, the researchers say that the new device offers at least three significant advances. First, it provides continuous monitoring, as the sensor is physically connected to the mouse and remains in place over the entire experimental period. Second, the flexible sensor enshrouds the tumor and is therefore able to measure shape changes that are difficult to discern with other methods. Third, FAST is both autonomous and non-invasive. It is connected to the skin – not unlike an adhesive bandage – battery operated, and connected wirelessly. The mouse is free to move unencumbered by the device or wires, and scientists do not need to actively handle the mice following sensor placement. FAST packs are also reusable, cost just USD 60 or so to assemble, and can be attached to the mouse in minutes.

“It is a deceptively simple design,” said Alex Abramson, first author of the study and a recent postdoc in the lab of Zhenan Bao, the K.K. Lee Professor in Chemical Engineering in the Stanford School of Engineering, “but these inherent advantages should be very interesting to the pharmaceutical and oncological communities. FAST could significantly expedite, automate, and lower the cost of the process of screening cancer therapies.”

Related Links:
Stanford University 


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
New
Transducer Covers
Surgi Intraoperative Covers
New
Diagnosis Display System
C1216W

Latest Critical Care News

Ablation Treatment Better Than Medication for Heart Attack Survivors

Cranial Accelerometry Headset Enables Timely and Accurate Prehospital Detection of LVO Strokes

Ingestible Capsule Pump Drugs Directly into Walls of GI Tract