We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Soft, Robotic, and Implantable Ventilator Improves Lung Capacity for People with Diaphragm Dysfunction

By HospiMedica International staff writers
Posted on 16 Dec 2022

The diaphragm - the dome-shaped muscle that lies just beneath the ribcage - works like a slow and steady trampoline, pushing down to create a vacuum for the lungs to expand and draw air in, then relaxing as air is pushed out. In this way, the diaphragm automatically controls our lung capacity, and is the major muscle responsible for our ability to breathe. But when the diaphragm’s function is compromised, the breathing instinct becomes a laborious task. Chronic diaphragm dysfunction can occur in people with ALS, muscular dystrophy, and other neuromuscular diseases, as well as patients with paralysis, and damage to the phrenic nerve, which stimulates the diaphragm to contract. Now, a new proof-of-concept design by a team of engineers aims to one day boost the diaphragm’s life-sustaining function and improve lung capacity for people with diaphragm dysfunction.

The team of engineers at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) has developed a soft, robotic, and implantable ventilator that is designed to augment the diaphragm’s natural contractions. At the heart of the system are two soft, balloon-like tubes that can be implanted to lie over the diaphragm. When inflated with an external pump, the tubes act as artificial muscles to push down on the diaphragm and help the lungs expand. The tubes can be inflated at a frequency to match the diaphragm’s natural rhythm.


Image: The soft, implantable ventilator works with the diaphragm to improve breathing (Photo courtesy of MIT)
Image: The soft, implantable ventilator works with the diaphragm to improve breathing (Photo courtesy of MIT)

The researchers demonstrated the implantable ventilator in animal models, and showed that in cases of compromised diaphragm function, the system was able to significantly improve the amount of air that the lungs could draw in. There is still much work to be done before such an implantable system can be used to treat humans with chronic diaphragm dysfunction. But the preliminary results open a new path in assistive breathing technology that the researchers are eager to optimize.

“This is a proof of concept of a new way to ventilate,” said Ellen Roche, associate professor of mechanical engineering and a member of the Institute for Medical Engineering and Science at MIT. “The biomechanics of this design are closer to normal breathing, versus ventilators that push air into the lungs, where you have a mask or tracheostomy. There’s a long road before this will be implanted in a human. But it’s exciting that we could show we could augment ventilation with something implantable.”

Related Links:
MIT


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Radial Shock Wave Device
MASTERPULS »ultra«

Latest Critical Care News

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

First-Of-Its-Kind Dissolvable Stent to Improve Outcomes for Patients with Severe PAD