We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Stick-On Sensor Could Reduce Hospital Readmissions for Heart Failure Complications

By HospiMedica International staff writers
Posted on 10 Mar 2023

Heart failure occurs when the heart is unable to effectively pump blood throughout the body due to either weakness or stiffness. This condition carries a high economic and healthcare burden due to frequent hospitalizations and premature deaths. Patients suffering from heart failure are typically instructed to monitor their weight and watch for symptoms such as swelling, fatigue, shortness of breath, and chest pain. Despite these efforts, many patients end up being readmitted to the hospital for heart failure complications, often caused by fluid accumulation in the lungs. Now, a study has found that the use of a stick-on sensor that alerts clinicians about lung fluid buildup can reduce the likelihood of heart failure patients being readmitted to the hospital by 38% within 90 days.

In an effort to reduce hospital readmissions, researchers at The Pennsylvania State University (University Park, PA, USA) conducted a study to assist patients and clinicians in detecting early signs of fluid buildup and intervening before hospitalization is necessary. By remotely providing clinicians with actionable information about a patient's condition, the device encourages clinicians to adjust medications earlier and prevent complications from worsening. The device, known as the µCor ("microcor") system, uses radiofrequency signals to measure the wearer's thoracic fluid index, which is an indicator of fluid in the lungs. It can be easily attached and removed using an adhesive patch on the left side of the chest, and transmits data to the patient's clinician. The µCor system may offer a less invasive and more cost-effective alternative to implantable sensors.


Image: A new wearable sensor could be a cheaper, less invasive way to reduce hospital readmissions (Photo courtesy of Pexels)
Image: A new wearable sensor could be a cheaper, less invasive way to reduce hospital readmissions (Photo courtesy of Pexels)

In this study, researchers included 522 individuals who had been hospitalized within the past 10 days due to heart failure. All participants were given a µCor monitor, which they continuously wore for 90 days. Half of the individuals were assigned to the control group, where the µCor monitor recorded data without transmitting it to their healthcare provider. The researchers utilized the recorded data from this group to establish a baseline threshold for determining elevated levels of thoracic fluid retention. The other half of participants were assigned to the intervention group, where their µCor monitor recorded data and transmitted it to their clinician, who was alerted if their thoracic fluid levels went beyond the established threshold. The results showed that individuals whose clinicians monitored their thoracic fluid using the µCor system were 38% less likely to experience hospitalization due to heart failure within 90 days (the primary endpoint of the study) when compared to those whose clinicians did not receive this information. Additionally, they were 38% less likely to experience a combined endpoint of heart failure-related emergency department visits, hospitalizations, or deaths.

When evidence of fluid buildup is present, common interventions include prescribing diuretics to reduce fluid retention and optimizing the dosages of other heart failure medications. However, since the µCor system is capable of detecting changes in the lungs before symptoms such as swelling become apparent, researchers believe that this device can prompt clinicians to take appropriate measures earlier, thereby preventing complications from worsening. Many devices can monitor for signs of heart failure complications, including implantable cardio-defibrillators (ICDs) and insertable loop recorders, which track abnormal heart rhythms that generally coexist with heart failure, and the shoulder-mounted ReDS system, which monitors for fluid in the lungs.

The µCor system provides a convenient and less invasive alternative to bulkier devices like ReDS or implantable devices. Moreover, clinicians may utilize µCor intermittently to monitor patients' thoracic fluid levels during high-risk periods, such as after a hospitalization. This can prevent overloading clinical staff with unnecessary data and instead enable them to provide more focused and effective support to the patients who stand to benefit the most from close monitoring. Besides its capability to measure thoracic fluid levels, researchers intend to study how the µCor device's additional collected data, such as heart and breathing rates, can complement the data provided to clinicians, thus creating a more complete picture of a patient's health status. Furthermore, researchers claim that the device might prove useful for monitoring patients with lung diseases, in addition to heart failure.

"It's very exciting to have a positive result within the remote monitoring field," said John P. Boehmer, MD, professor of medicine and surgery at The Pennsylvania State University in State College, Pennsylvania, and the study's lead author. "Having a wearable technology is particularly encouraging because it gives you the opportunity to monitor a patient during a high-risk interval and then stop monitoring when they exit that high-risk interval."

Related Links:
The Pennsylvania State University 


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Bronchoscope
EB-500

Latest Critical Care News

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants