We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.


Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Technology Uses Bio-Printed ‘Patches’ to Repair Damaged Heart Tissue

By HospiMedica International staff writers
Posted on 14 Mar 2023

Cardiovascular disease remains the leading cause of death globally. One of the associated complications of heart disease is heart failure, in which inadequate blood supply to an affected region causes the death of heart tissue. This often necessitates life-long medication, and end-stage heart failure patients may subsequently be enrolled on a waiting list for a heart transplant. Now, researchers have demonstrated the potential of bio-engineered heart tissues in promoting the safe and effective recovery of patients recovering from damage due to an extensive heart attack.

The cutting-edge technology developed by researchers from The University of Technology Sydney (UTS, Sydney, Australia) fabricates personalized ‘bio-inks’ utilizing stem cells obtained from a patient's body. These "bio-inks" are subsequently utilized for 3D-printing cardiac tissues to repair the regions affected by dead tissues resulting from a heart attack. Further testing for the long-term effects of this technology is underway before it enters clinical trials.

Image: Personalized ‘bio-inks’ are used to 3D-print cardiac tissues to repair areas of dead tissue caused by heart attacks (Photo courtesy of UTS)
Image: Personalized ‘bio-inks’ are used to 3D-print cardiac tissues to repair areas of dead tissue caused by heart attacks (Photo courtesy of UTS)

“Our study demonstrated that bio-engineered patches were the best and most robust treatment of heart failure – patches generated with other approaches either did not induce any improvement or the improvement was inconsistent,” said Dr. Carmine Gentile, head of the Cardiovascular Regeneration Group at UTS. “Our bio-engineered patches promise to be safer, more consistent, and cost-effective for the patient. Because this technology will enable patients to use their own stem cells to create the heart ‘patches’, not only can they potentially dramatically reduce the trauma and cost of a heart transplant, but also avoid hurdles such as a body rejecting donor tissues.”

Related Links:
The University of Technology Sydney

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Thyroid Shield
Standard Thyroid Shield

Latest Critical Care News

AI Captures ECG Patterns to Predict Future Sudden Cardiac Arrest

Faster, More Accurate Blood Flow Simulation to Revolutionize Treatment of Vascular Diseases

Breakthrough Electrochemical Technology to Revolutionize Treatment of Internal Wounds and Cancerous Tumors