We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Injectable Hydrogel Electrodes Could Prevent Ventricular Arrhythmias

By HospiMedica International staff writers
Posted on 09 May 2023

Ventricular arrhythmias are dangerous heart rhythm disorders that originate in the heart's lower chambers and can be caused by delayed conduction in scarred or diseased heart tissue, such as that resulting from a heart attack. Researchers are now developing conductive, injectable hydrogel electrodes to prevent and manage these arrhythmias and reduce the risk of sudden cardiac death.

An interdisciplinary research team from The Texas Heart Institute (Houston, TX, USA) and The University of Texas at Austin (Austin, TX, USA) is building on the initial proof-of-concept of pacing heart muscle using a hydrogel that solidifies within the body. They aim to create a combined material and delivery system that interfaces with existing pacemaker technology, enhancing its ability to treat ventricular arrhythmias. The researchers will closely collaborate to evaluate the injectable hydrogel's safety, functionality, and durability through benchtop testing and in a porcine model. They will also develop a transcutaneous catheter delivery system for the innovative hydrogel.


Injectable hydrogel electrodes could become a novel method for managing ventricular arrhythmias (Photo courtesy of Freepik)
Injectable hydrogel electrodes could become a novel method for managing ventricular arrhythmias (Photo courtesy of Freepik)

The team has already demonstrated the feasibility of pacing the heart using the hydrogel in a porcine model. By assessing its use in a myocardial infarction porcine model, they will investigate whether the hydrogel can restore conduction across scars, reducing ventricular arrhythmias and implantable cardioverter defibrillator shocks. If successful, this approach could effectively eliminate conduction delays in scarred heart tissue, which lead to lethal ventricular arrhythmias. A four-year, USD 2.37 million grant from the National Heart, Lung, and Blood Institute will support the researchers in conducting studies using a post-myocardial infarction model to demonstrate the hydrogel electrode pacing's potential to decrease the occurrence of ventricular arrhythmias and defibrillation shocks.

“We identified an unmet need to deliver electrical signals across these problematic scars in the heart, and unfortunately the leads that are currently available can only be threaded through larger vessels,” said electrophysiology medical device pioneer and clinician Dr. Mehdi Razavi, Director of Electrophysiology Clinical Research & Innovations at The Institute. “We envisioned using hydrogels injected into the small vessels that cross over scarred regions of the heart to propagate electrical currents and more effectively pace the heart.”

“Stimulating vast areas of the heart through planar wavefront propagation could introduce an entirely new cardiac resynchronization therapy, and ultimately alter the landscape of cardiac rhythm management through a new platform for painless ventricular defibrillation,” added Dr. Razavi.

 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
New
In-Bed Scale
IBFL500
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Latest Critical Care News

Ablation Treatment Better Than Medication for Heart Attack Survivors

Cranial Accelerometry Headset Enables Timely and Accurate Prehospital Detection of LVO Strokes

Ingestible Capsule Pump Drugs Directly into Walls of GI Tract