Graphene-Based Biosensors Could Detect Sepsis Earlier in Critically Ill Patients

By HospiMedica International staff writers
Posted on 09 Jun 2023

Lactate serves as a vital biomarker in managing hospitalized patients who are critically ill. A common complication in intensive care units, hyperlactatemia, can occur either due to insufficient oxygen supply to tissues or underlying conditions such as advanced liver disease. If left untreated, hyperlactatemia can escalate into lactate acidosis, a severe condition that can be life-threatening. Reliable real-time lactate detection, whether via single-point or continuous monitoring, has the potential to enhance patient outcomes in critical care and speed up the diagnosis of sepsis in critically ill individuals. Now, a new study has highlighted the significant potential of graphene-based biosensors for detecting elevated lactate levels.

The study by researchers at the University of Bath (Bath, UK) showed that using Integrated Graphene’s (Stirling, UK) Gii-Sens electrochemical sensor can enhance the diagnostic accuracy of hyperlactatemia. The Gii-Sens, a diagnostic biosensing electrode, outperforms conventional sensing materials by a factor of 10-100, enabling rapid, laboratory-quality testing at the point of need in a cost-effective manner. Gii-Sens electrochemical electrodes, produced using Integrated Graphene’s novel 3D graphene Gii, are disposable sensors designed for one-step assays without the need for pre-treatments.


Image: Gii-Sens is the world`s first 3D Graphene foam electrode for biosensing (Photo courtesy of Integrated Graphene)

“Lactate is a naturally occurring biomarker which everyone produces as a byproduct of exercising. For most people it is easily processed by the body and will cause no major harm, apart from a little cramp if you overexert yourself,” said Dr. Marco Caffio, Integrated Graphene’s Co-Founder and CSO. “However, for some critically ill patients and those with underlying conditions it can be a sign of a range of other issues, some of which, like sepsis, can be fatal. Having a robust way of monitoring lactate levels is important in ensuring the best possible outcomes for these patients. The findings of this study demonstrate Gii’s reliable performance and potential to save lives.”

Related Links:
University of Bath 
Integrated Graphene 


Latest Critical Care News