We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Nanosurgical Tool Performs Biopsy of Living Cell Repeatedly during Exposure to Cancer Treatment

By HospiMedica International staff writers
Posted on 08 Mar 2024

Cancer cell plasticity, a phenomenon wherein cells alter their behavior, poses a significant challenge in cancer therapy, especially since it is not well understood. This adaptability is particularly evident in Glioblastoma (GBM) cancer cells, known for their rapid adaptation, leading to resistance against radiotherapy and chemotherapy. Understanding these adaptive mechanisms and finding ways to counter them could be pivotal in preventing cancer recurrence, a common issue with GBM. Traditional single-cell study methods usually destroy the cells during analysis, limiting observations to either pre or post-treatment stages. Now, a breakthrough nanosurgical tool, which is around 500 times thinner than a human hair, could offer unprecedented insights into cancer treatment resistance.

The high-tech double-barrel nanopipette, developed by scientists at the University of Leeds (West Yorkshire, UK), enables - for the first time - the observation of individual living cancer cells' responses to treatment over time. This tool is equipped with two nanoscopic needles that enable simultaneous injection and extraction from the same cell, thus broadening the scope of its application. The semi-automatic nature of the platform significantly enhances the speed of data collection, allowing for more efficient and accurate analysis of a larger number of individual cells than ever before.


Image: Electron microscopy image of the nanopipette (Photo courtesy of University of Leeds)
Image: Electron microscopy image of the nanopipette (Photo courtesy of University of Leeds)

The nanosurgical device can perform repeated biopsies on a living cell throughout cancer treatment. It samples small portions of the cell's contents without causing cell death, thereby letting scientists monitor the cell's reaction over a period. In their research focusing on GBM, the scientists used this tool to evaluate how cancer cells develop resistance to chemotherapy and radiotherapy. Due to its minuscule size, the nanopipette is operated through robotic software that precisely controls the tiny needles, maneuvering them into the cells in a petri dish. The second needle of the nanopipette is crucial in operating the device. This innovation allows scientists to take repeated samples, enabling them to track disease progression in individual cells, a feat previously unachievable with existing technologies.

“This is a significant breakthrough. It is the first time that we have a technology where we can actually monitor the changes taking place after treatment, rather than just assume them,” said Dr. Lucy Stead, Associate Professor of Brain Cancer Biology at the University of Leeds’ School of Medicine. “This type of technology is going to provide a layer of understanding that we have simply never had before. And that new understanding and insight will lead to new weapons in our armory against all types of cancer.”

Related Links:
University of Leeds


Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Documentation System For Blood Banks
HettInfo II
New
X-ray Diagnostic System
FDX Visionary-A

Latest Critical Care News

Ablation Treatment Better Than Medication for Heart Attack Survivors

Cranial Accelerometry Headset Enables Timely and Accurate Prehospital Detection of LVO Strokes

Ingestible Capsule Pump Drugs Directly into Walls of GI Tract