We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Intelligent Brain Pacemaker to Help Reduce Parkinson’s Disease Symptoms

By HospiMedica International staff writers
Posted on 20 Aug 2024

Parkinson’s disease (PD) which affects about 10 million people globally is due to the depletion of dopamine-producing neurons in deeper brain regions that regulate movement. This deficiency not only impairs motor skills but also impacts non-motor functions like mood, motivation, and sleep. Initially, treatment involves levodopa, which substitutes for dopamine. However, its side effects include dyskinesia, or uncontrolled movements, as it takes effect. When the drug's effect wears off, symptoms like tremors and stiffness return. Some patients resort to continuous deep brain stimulation (cDBS), which involves implanting electrodes that deliver steady electrical stimulation, reducing medication need and symptom fluctuation, though it may lead to imbalanced symptom control. Now, a new study has found that an implanted device regulated by the body’s brain activity can provide continuous and improved treatment for PD symptoms in some people with the disorder.

The feasibility study funded by the National Institutes of Health (NIH, Bethesda, MD, USA) and conducted by researchers at the University of California, San Francisco (San Francisco, CA, USA) found that adaptive deep brain stimulation (aDBS) showed greater efficacy in symptom control compared to traditional DBS, which provides uniform stimulation regardless of changing brain needs. In comparison, aDBS uses data taken directly from a person’s brain and utilizes machine learning to adjust the stimulation level in real-time as the person’s needs change over a period.


Image: The implanted device responds to changes in brain signals, adjusting the amount of stimulation throughout the day (Photo courtesy of Phillp Starr Lab)
Image: The implanted device responds to changes in brain signals, adjusting the amount of stimulation throughout the day (Photo courtesy of Phillp Starr Lab)

In the study, four participants already under conventional DBS identified their most persistent symptom despite ongoing treatment, often either involuntary movements or movement initiation difficulties. These participants then received aDBS in addition to their regular DBS. After months of refining the aDBS algorithm, they tested it at home, switching between standard DBS and aDBS. The study findings published in the journal Nature Medicine show that symptom management improved by about 50% with aDBS, with participants frequently recognizing when they were receiving aDBS due to noticeable improvements.

The fluctuating nature of brain drug levels post-medication could be more effectively managed with aDBS, which adapts to changing stimulation needs, thus enhancing its appeal for patients on high levodopa doses. Despite these promising results, broader application faces hurdles like the complex initial device setup, which demands significant expert intervention. Nevertheless, the researchers are optimistic about future automation that would minimize clinical visits for adjustments, facilitating wider clinical adoption and testing of aDBS therapy.

“This study marks a big step forward towards developing a DBS system that adapts to what the individual patient needs at a given time,” said Megan Frankowski, Ph.D., program director for NIH’s Brain Research Through Advancing Innovative Neurotechnologies® Initiative, or The BRAIN Initiative®, which helped fund this project. “By helping to control residual symptoms while not exacerbating others, adaptive DBS has the potential to improve the quality of life for some people living with Parkinson’s disease.”

Related Links:
UC San Francisco
NIH


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Lithotripter
Swiss LithoClast Trilogy
New
Point-Of-Care Terminal
POC-824

Latest Critical Care News

Breakthrough Technique Stops Irregular Heartbeats

AI Model Accurately Predicts Progression of Autoimmune Disease

AI Predicts and Identifies Subtypes of Type 2 Diabetes from Continuous Blood Glucose Monitor