We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Wearable Sensor Patch Paired to Smartphone Detects Arrhythmia

By HospiMedica International staff writers
Posted on 05 Nov 2024

Wearable sensors are devices designed to be worn on the body that measure various physiological states. As part of the Internet of Things (IoT), these sensors hold significant potential for health monitoring. They produce substantial amounts of data, which must be processed for meaningful interpretation. The area of computing focused on processing this data locally on the sensor or a connected device, instead of relying on a remote cloud server, is known as edge computing. This approach is essential for the advancement of wearable sensor technology. Researchers have now employed edge computing on smartphones to analyze data from a multimodal flexible wearable sensor patch to detect arrhythmia, coughs, and falls.

A research team from Hokkaido University (Hokkaido, Japan) has created a flexible multimodal wearable sensor patch and developed edge computing software capable of identifying arrhythmia, coughs, and falls in volunteers. This innovative sensor, which utilizes a smartphone as the edge computing device, is detailed in a paper published in the journal Device. The patch is equipped with sensors that monitor cardiac activity through electrocardiogram (ECG), as well as respiration, skin temperature, and humidity due to perspiration. After confirming their long-term usability, the sensors were integrated into a flexible film that adheres to the skin. Additionally, the sensor patch contains a Bluetooth module for connection to a smartphone.


Image: The smart sensor patch is fabricated on a supporting film so that it may be peeled off and stuck onto the skin (Photo courtesy of Guren Matsumura, et al. Device)
Image: The smart sensor patch is fabricated on a supporting film so that it may be peeled off and stuck onto the skin (Photo courtesy of Guren Matsumura, et al. Device)

The team initially evaluated the sensor patch's ability to detect physiological changes in three volunteers who wore it on their chests. The patch was used to monitor vital signs in these individuals at wet-bulb globe temperatures (which assess heat stress risk) of 22°C and above 29°C. While the sample size was limited, the researchers were able to observe significant changes in vital signs during time-series monitoring at elevated temperatures. This could potentially aid in identifying symptoms of early-stage heat stress. To further enhance their findings, the team developed a machine learning program to analyze the recorded data for additional symptoms, including heart arrhythmia, coughing, and falls. Besides conducting the analysis on a computer, they also created an edge computing application for smartphones that achieved similar analytical results, with a prediction accuracy exceeding 80%.

“Our goal in this study was to design a multimodal sensor patch that could process and interpret data using edge computing, and detect early stages of disease during daily life,” said Professor Kuniharu Takei from Hokkaido University. “The significant advance of this study is the integration of multimodal flexible sensors, real-time machine learning data analyses, and remote vital monitoring using a smartphone. One drawback of our system is that training could not be carried out on the smartphone, and had to be done on the computer; however, this can be solved by simplifying the data processing.”


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
MRI System
Ingenia Prodiva 1.5T CS
New
Mammo 3D Performance Kits
Mammo 3D Performance Kits

Latest Critical Care News

World’s Most Sensitive Flexible Strain Sensor Enables Real-Time Stroke Monitoring

Gel-Based Stretchable Triboelectric Nanogenerators to Revolutionize Wearable Technology

First Of Its Kind Wearable Sticker Accurately Monitors and Detects Changes in Breathing