We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

EMRs Could Help Discover New Disease Associations

By HospiMedica International staff writers
Posted on 10 Dec 2013
A new study is repurposing genetic data and electronic medical records (EMRs) to perform a large-scale validation of known disease associations.

Researchers at Vanderbilt University Medical Center (Vanderbilt, Nashville, TN, USA) and other institutions participating in the phenome-wide association study (PheWAS) used genotype data from 13,835 individuals of European descent, exhibiting 1,358 diseases collectively. The team then ran PheWAS on 3,144 single-nucleotide polymorphisms (SNPs), checking each SNP association with each of the 1,358 disease phenotypes. The researchers thus succeeded in identifying 63 previously unknown SNP-disease associations, the strongest of which related to skin diseases.

The researchers also created an online PheWAS catalog that may help understand the influence of many common genetic variants on human conditions. The researchers stressed that PheWAS would be unworkable without the eMERGE Network, of which Vanderbilt is the coordinating center. The network has expanded to nine sites with DNA samples from about 51,000 individuals linked to EMRs. The eMERGE Network is funded by the US National Human Genome Research Institute (Bethesda, MD, USA). The study was published on November 24, 2013, in Nature Biotechnology.

“This study broadly shows that we can take decades of off-the-shelf electronic medical record data, link them to DNA, and quickly validate known associations across hundreds of previous studies; at the same time, we can discover many new associations,” said lead author Josh Denny, MD, MSc, an associate professor of biomedical informatics and medicine. “Our method does not select any particular disease; it searches simultaneously for more than a thousand diseases. By doing this, we were able to show some genes that are associated several diseases or traits, while others are not.”

“If you think about the way genetic research has been done for the last 50 years or more, a lot of it was done through carefully planned clinical trials or observational cohorts,” added Dr. Denny. “This certainly does not supplant those in any way but provides a cost efficient, systematic method to look at many different diseases over time in a way that you really can't do easily with an observational cohort.”

Related Links:

Vanderbilt University Medical Center
eMERGE Network
US National Human Genome Research Institute



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Electric Bariatric Patient Lifter
SVBL 205

Latest Health IT News

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Strategic Collaboration to Develop and Integrate Generative AI into Healthcare

AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity