We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Silver Nanowire Sensors Hold Promise for Prosthetics

By HospiMedica International staff writers
Posted on 05 Feb 2014
Wearable, multifunctional sensors made from silver nanowires could be used in biomedical, military, or athletic applications.

Developed by researchers at North Carolina State University (NCSU, Raleigh, USA), the highly stretchable multifunctional sensors can simultaneously detect multiple stimuli such as stretch, strain (up to 50%), pressure (up to ~1.2 MPa), temperature, or touch with high sensitivity, fast response time (~40 ms), and good pressure mapping function. The sensors utilize the capacitive sensing mechanism, with silver nanowires used as electrodes and Ecoflex used as a dielectric. The silver nanowire electrodes are screen-printed onto an insulating material between two stretchable capacitance conductors that have the ability to store electric charges.

Image: Silver nanowires mounted onto a thumb joint to monitor skin strain (Photo courtesy Shanshan Yao, NCSU).
Image: Silver nanowires mounted onto a thumb joint to monitor skin strain (Photo courtesy Shanshan Yao, NCSU).

Pushing, pulling or touching the stretchable conductors changes the capacitance, which is measured by the silver nanowires. The sensors have been tested for several wearable applications, including monitoring thumb movement, sensing knee strain in patellar reflex and other human motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, for measuring bioelectronic signals such as electrocardiograms (ECGs), and for use in flexible touch panels. The study describing the nanowires was published early online on January 14, 2014, in Nanoscale.

“The technology is based on either physical deformation or “fringing” electric field changes,” said lead author Shanshan Yao, a PhD student at NCSU. “The latter is very similar to the mechanism used in smartphone touch screens, but the sensors we’ve developed are stretchable and can be mounted on a variety of curvilinear surfaces such as human skin.”

“These sensors could be used to help develop prosthetics that respond to a user’s movement and provide feedback when in use,” said senior author Associate Professor Yong Zhu, PhD, of the department of mechanical and aerospace engineering. “They could also be used to create robotics that can ‘feel’ their environment, or the sensors could be incorporated into clothing to track motion or monitor an individual’s physical health.”

Related Links:

North Carolina State University



Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Mattress
Powered Therapeutic Mattress
New
Pediatric Cart
UXGLA-9PEDS

Latest Health IT News

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Strategic Collaboration to Develop and Integrate Generative AI into Healthcare

AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity