We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Intraventricular LVAD Measures Blood Flow Directly

By HospiMedica International staff writers
Posted on 17 Aug 2016
A new left ventricular assist device (LVAD) provides direct flow measurement, which may give clinicians the ability to detect potential patient problems earlier.

The aVAD is an intraventricular, axial flow LVAD that while only 2.5 centimeters in diameter, provides a 1.2 cm main channel that rests outside the ventricle. A second component inserted into the heart contains an adjustable pump depth mechanism to provide optimal action. Deep linear channels help transport blood through the pump, away from the dangerous forces of radial shear. The aVAD also features direct flow measurement and 3G cellular-powered remote monitoring, allowing clinical teams to notice problems and make corrections sooner.

Image: The aVAD intraventricular, axial flow LVAD (Photo courtesy of ReliantHeart).
Image: The aVAD intraventricular, axial flow LVAD (Photo courtesy of ReliantHeart).

Additional features include active magnetic stabilization, which pulls the pump's impeller precisely between the front and rear retention cups, and directional retention. A FastConnect system provides for adjustable pump depth inside the ventricle, and the entire aVAD driveline is disconnectable just below the diaphragm, so that in the event of driveline infection, it can be removed and replaced with a new one. The aVAD is a product of ReliantHeart (Houston, TX, USA), and has received the European Community CE mark of approval.

“Other LVADs have a calculated flow measurement, as opposed to the flow sensor aVAD uses; the first thing [physicians] need to do is trust the flow,” said Rodger Ford, CEO of ReliantHeart. “In addition, clinicians will need to gain experience with remote monitoring. Physicians will need to set the alarms properly so that the thresholds for low flow or high power provide an advance warning of something that could be a bad outcome.”

An LVAD does not replace the heart, but is intended to complement a weakened heart by providing circulatory support. Surgically implanted in proximity to the heart, one end is attached to the left ventricle, while the other is attached to the aorta. Blood flows from the ventricles into the pump and is then ejected out of the device and into the aorta.

Related Links:
ReliantHeart



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Family Practice Exam Table
2100M7
New
Phlebotomy Cart
TR-65J38

Latest Critical Care News

Power-Free Color-Changing Strain Sensor Enables Applications in Health Monitoring

AI-Powered Wearable ECG Monitor to Improve Early Detection of Cardiovascular Disease

World’s Most Sensitive Flexible Strain Sensor Enables Real-Time Stroke Monitoring