We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Joystick-Controlled Neurosurgical Robot Could Revolutionize Complex Brain Surgeries

By HospiMedica International staff writers
Posted on 13 Oct 2023

Robots are a familiar sight in operating rooms nowadays, aiding surgeons in performing minimally invasive procedures. However, their use in neurosurgery has been more restricted. While robots are proficient at simpler tasks like placing an electrode, complex operations like tumor removal have typically required surgeons to expose the brain through the skull. Now, scientists have designed a prototype two-armed, joystick-controlled neurosurgical robot that has the potential to transform complex brain surgeries, such as excising tumors.

The robot developed by engineers at Children's Hospital Boston (Boston, MA, USA) skillfully executed a range of two-handed neurosurgical tasks required for tumor removal and reducing tumor size in lab-created models. The crowning achievement was the endoscopic extraction of a pineal tumor from the core of a 3D model brain, based on imaging data from an infant patient. During the tests, neurosurgeons found that the dual-armed robot allowed them to complete delicate operations faster than using traditional manual instruments, all while avoiding the compression of adjacent brain tissue.


Image: A prototype of the joystick-controlled robot that could revolutionize complex brain surgeries (Photo courtesy of Ashkan Pourkand)
Image: A prototype of the joystick-controlled robot that could revolutionize complex brain surgeries (Photo courtesy of Ashkan Pourkand)

The robot's impressive performance indicates that it could be used for excising larger, vascularized tumors that currently necessitate traditional open surgery methods. Looking beyond tumor and cyst removal, the engineers also see the robot's potential in treating conditions like hydrocephalus and in performing transurethral endoscopic procedures for conditions like bladder tumors and benign prostatic enlargement. The engineers are optimistic that a well-established medical device company will eventually take this dual-armed robot to human trials.

"The brain is the last part of the body where tool access and articulation are poor," said Pierre Dupont, Ph.D., chief of Pediatric Cardiac Bioengineering at Boston Children's, who developed the robot. "Neurosurgeons who have seen the robot all say, 'This is what we need.' We want to devise a business model that will work for hospitals, and then go back and refine the robot to fit the model."

Related Links:
Children's Hospital Boston


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Point-Of-Care Terminal
POC-824
New
Family Practice Exam Table
2100M7

Latest Surgical Techniques News

Laser Patterning Technology Revolutionizes Stent Surgery for Cardiovascular Diseases

Minimally Invasive Surgical Technique Creates Anastomosis Without Leaving Foreign Materials Behind

Second Generation Robotic Platform Introduces Haptic Feedback and Dual-Mode Articulation