We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

By HospiMedica International staff writers
Posted on 31 Jan 2023

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different types of neurological disorders.

NeuralTree, a closed-loop neuromodulation system-on-chip, developed by researchers at EPFL (Lausanne, Switzerland) can detect and alleviate disease symptoms. By utilizing a 256-channel high-resolution sensing array and an energy-efficient machine learning processor, the system can extract and classify a wide range of biomarkers from real patient data and animal models of disease in-vivo, resulting in highly accurate prediction of symptoms. NeuralTree works by extracting neural biomarkers – patterns of electrical signals believed to be associated with specific neurological disorders – from brain waves. It classifies the signals and indicates the possibility of an approaching epileptic seizure or Parkinsonian tremor, for instance. Upon detection of a symptom, a neurostimulator located on the chip becomes activated and sends out an electrical pulse to block it.


Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

NeuralTree’s unique design provides the highest levels of efficiency and versatility as compared to the state-of-the-art. The chip features 256 input channels, as compared to 32 for previous machine-learning-embedded devices, enabling the implant to process more high-resolution data. The chip’s area-efficient design makes it extremely small (3.48mm2), creating significant potential for scalability to additional channels. The integrated ‘energy-aware’ learning algorithm that penalizes features consuming a lot of power also makes NeuralTree extremely energy efficient.

The system can also detect a wider range of symptoms than other devices, which focus mainly on the detection of epileptic seizures. The researchers trained the chip’s machine learning algorithm on datasets from both epilepsy and Parkinson’s disease patients, and accurately classified pre-recorded neural signals from both the categories. With the aim of making neural interfaces more intelligent for more effective disease control, the researchers are already looking ahead to innovate further. As a next step, the team plans to enable on-chip algorithmic updates in order to keep up with the evolution of neural signals.

“To the best of our knowledge, this is the first demonstration of Parkinsonian tremor detection with an on-chip classifier,” said Mahsa Shoaran of the Integrated Neurotechnologies Laboratory in the School of Engineering. “Eventually, we can use neural interfaces for many different disorders, and we need algorithmic ideas and advances in chip design to make this happen.”

Related Links:
EPFL


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
1.5T MRI System
uMR 670

Latest Surgical Techniques News

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

Next-Gen Computer Assisted Vacuum Thrombectomy Technology Rapidly Removes Blood Clots

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices