We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Injection Technique Helps Repair Spinal Cord Injury

By HospiMedica International staff writers
Posted on 11 Feb 2020
A novel neural precursor cell (NSC) delivery technique employs single bolus cell injections into the subpial space to boost spinal cord recovery, according to a new study.

Developed by researchers at the University of California, San Diego (UCSD; USA), the Czech Academy of Sciences, (Libechov, Czech Republic), the University of the Ryukyus (Okinawa, Japan) and other institutions, the new technique injects NSCs into the subpial space--situated between the pial membrane and the superficial layers of the spinal cord—so that they can differentiate into multiple types of neural cells. In a study in immunodeficient rats, the researchers injected two boluses of human NSCs into the subpial space of the cervical and lumbar spinal cord, respectively.

Image: Injecting mesenchyml cells into the subpial space stimulates cell differentiation (Photo courtesy of Wikimedia)
Image: Injecting mesenchyml cells into the subpial space stimulates cell differentiation (Photo courtesy of Wikimedia)

The researchers then assessed the survival, distribution, and phenotype of the transplanted cells six to eight months later. Immunofluorescence staining and mRNA sequencing analysis demonstrated a near‐complete occupation of the spinal cord by injected cells, with the transplanted NSCs preferentially acquiring glial phenotypes. In the outermost layer of the spinal cord, the injected hNSCs differentiated into glia limitans‐forming astrocytes and expressed human‐specific superoxide dismutase and laminin. The study was published on January 29, 2020, in Stem Cells Translational Medicine.

“Current spinal cell delivery techniques involve direct needle injection into the spinal parenchyma, the primary cord of nerve fibers running through the vertebral column. As such, there is an inherent risk of spinal tissue injury or intraparechymal bleeding,” said corresponding author Professor Martin Marsala, MD, of UCSD. “The new technique is less invasive, depositing injected cells into the spinal subpial space. This injection technique allows the delivery of high cell numbers from a single injection. Injected cells acquire the functional properties consistent with surrounding host cells.”

According to the researchers, the data show that the subpial cell delivery technique is highly effective in populating the entire spinal cord with injected NSCs, accelerating and improving treatment potency in cell-replacement therapies for spinal neurodegenerative disorders in which a broad repopulation by glial cells, such as oligodendrocytes or astrocytes, is desired, such as in the treatment of amyotrophic lateral sclerosis (ALS), multiple sclerosis, or spinal cord injury.

Related Links:
University of California, San Diego
Czech Academy of Sciences
University of the Ryukyus



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Documentation System For Blood Banks
HettInfo II
New
Phototherapy Eye Protector
EyeMax2

Latest Surgical Techniques News

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Novel Neural Interface to Help Diagnose and Treat Neurological Disorders with Minimal Surgical Risks