We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Yarn Made from Human Tissue Helps Repair Wounds

By HospiMedica International staff writers
Posted on 27 Feb 2020
Yarn grown from human skin cells can be knitted, crocheted, and sewed to create pouches, valves, and tubes, and even perforated membranes, according to a new study.

Developed by researchers at the French National Institute of Health and Medical Research (INSERM; Bordeaux, France), Fountain Therapeutics (Culver City, CA, USA), and other institutions, the “human textile” is made of cell-assembled extracellular matrix (CAM) sheets extracted from cultured adult, human fibroblasts. The biological, yet robust, material can be spun into a mass-produced yarn with a range of physical and mechanical properties for use in a range of clinical applications.

Image: A spool of yarn made from extracellular matrix sheets (Photo courtesy of Nicolas L`Heureux/ INSERM)
Image: A spool of yarn made from extracellular matrix sheets (Photo courtesy of Nicolas L`Heureux/ INSERM)

In the study, the researchers showed that the material can be used as a simple suture to close a wound, or even nitted into fully biological, human, implantable tissue-engineered vascular grafts (TEVGs) with mechanical burst pressure, suture retention strength, and transmural permeability that surpass clinical requirements. The yarn was also used to stitch up a rat’s wound, with the wound healing fully over the course of two weeks. IN addition, the researchers created a skin graft, using a custom-designed loom, to successfully stop a sheep’s artery from leaking. The study was published on January 26, 2020, in Acta Biomaterialia.

“By combining this truly ‘bio’ material with a textile-based assembly, this original tissue engineering approach is highly versatile and can produce a variety of strong human textiles that can be readily integrated in the body,” concluded senior author Nicolas L'Heureux, PhD, of INSERM, and colleagues. “This novel strategy holds the promise of a next generation of medical textiles that will be mechanically strong without any foreign scaffolding, and will have the ability to truly integrate into the host's body.”

The ECM is a collection of extracellular molecules that provides structural and biochemical support to the surrounding cells. It includes the interstitial matrix, composed of polysaccharide gels and fibrous proteins, and the basement membrane, which are sheet-like depositions on which various epithelial cells rest. Each type of connective tissue in animals has a different ECM; collagen fibers and bone mineral comprise the ECM of bone tissue; reticular fibers and ground substance comprise the ECM of loose connective tissue; and blood plasma is the ECM of blood.

Related Links:
French National Institute of Health and Medical Research
Fountain Therapeutics



Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Diagnosis Display System
C1216W
New
In-Bed Scale
IBFL500

Latest Surgical Techniques News

Novel Sensory System Enables Real-Time Intra-Articular Pressure Monitoring

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Novel Neural Interface to Help Diagnose and Treat Neurological Disorders with Minimal Surgical Risks