We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Remote Programming of Cardiac Implantable Devices Safe for MRI Scan, Shows Study

By HospiMedica International staff writers
Posted on 05 May 2022

More than 60 million magnetic resonance imaging (MRI) scans are performed worldwide each year, but imaging for the millions of patients with cardiac implantable electronic devices (CIEDs) such as pacemakers is a logistical challenge, because of concerns with how the magnetic field affects the implants. Now, a new study reveals safe and effective reprogramming of these devices is possible, even from a remote location. Remote programming could reduce the need to reschedule MRI scans and other procedures that require device programming in case there is no device representative or other qualified personnel present on-site to perform the task.

Researchers at the University of Missouri School of Medicine (Columbia, MO, USA) conducted an observational study of 209 patients at MU Health Care’s University Hospital who underwent remote programming of their device for MRI using Medtronic RM CareLink technology. Of those scans, 51 were performed urgently. An MRI technician started each session by contacting an off-site operator and placing a programming wand on the patient’s CIED, enabling the programmer to access the device remotely and switch to an MRI-safe mode. After completing the scan, the remote programmer returned the device to the patient’s baseline settings.


Image: Study shows remote programming of cardiac implantable devices is safe for MRI scan (Photo courtesy of Pexels)
Image: Study shows remote programming of cardiac implantable devices is safe for MRI scan (Photo courtesy of Pexels)

“During this study, none of the patients experienced any symptoms during the scan, no one needed any changes to the baseline settings afterward, and there were no technology issues,” said senior author Sandeep Gautam, MD, associate professor of clinical medicine. “The estimated time saved per scan was 18 to 38 minutes per patient, calculated by measuring the device representative's travel time to the MRI suite.”

“We believe this technology will reduce unnecessary use of health care resources and manpower,” added Gautam. “This will eventually lead to reduction in health care costs, as it will require a smaller number of personnel for device programming, eliminate travel cost and may be especially helpful in rural areas where access to health care is limited.”

Related Links:
University of Missouri School of Medicine 


Gold Member
12-Channel ECG
CM1200B
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Surgical Table
STERIS 5085 SRT

Latest Surgical Techniques News

Porous Gel Sponge Facilitates Rapid Hemostasis and Wound Healing

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Robotic Nerve ‘Cuffs’ Could Treat Various Neurological Conditions