New 3D Printing and Hydrogel Technology to Improve Biomedical Implants
Posted on 17 May 2023
Implantable biomedical devices such as pacemakers and blood pressure monitors need to be designed and produced in a manner that they not only fit and adhere to the body but also dissolve at the appropriate time. Now, an innovative technique incorporating 3D printing and hydrogels shows promise in enhancing biomedical implants and could also be beneficial in creating human-machine interfaces, including touch screens and neural implants.
Researchers at McGill University (Montreal, Quebec, Canada) are making progress in creating devices that are more compatible with the human body than existing electronic devices, thanks to the use of 3D printing and hydrogel technologies. This emerging technology, known as soft ionotronics, holds the potential to revolutionize wearable and implantable biomedical devices. For instance, individuals undergoing neuromuscular rehabilitation could take advantage of soft, flexible strain and pressure sensors that can attach to their joints.
The new soft ionotronics are more compatible with the human body, both mechanically and electrically, as compared to traditional rigid electronics. They offer immense potential for applications in human-machine interfaces, wearable and implantable devices, and flexible machinery. Ionic junctions, a type of ionotronic device, are crucial for rectifying currents in the same way as electrical p–n junctions. However, current ionic junctions face challenges in terms of electrical and mechanical performance, fabrication, and degradation. The newly introduced 3D printing technique has shown excellent printing capabilities and has enabled the researchers to create ionic junctions of different configurations with high fidelity.
“Compared to traditional manual fabrication methods, 3D printed ionic junctions can have much better shape fidelity and smaller sizes,” said Ran Huo, lead author of the study and PhD candidate in McGill’s Department of Engineering. “Shape fidelity is important for any device to function in the way it is designed. The smaller size means more ionic junctions can be included in one single device of limited size.”
Related Links:
McGill University