We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Detachable Cardiac Pacing Lead to Improve Safety for Heart Patients

By HospiMedica International staff writers
Posted on 03 Jul 2024

Bypass surgery ranks as one of the most frequent open-heart surgeries, with the risk of mortality now nearly negligible. Nonetheless, there are instances where the removal of temporary cardiac pacing leads results in fatal heart damage. These pacing leads are typically employed during the post-surgical recovery phase to monitor patients and mitigate the risk of postoperative arrhythmias, such as complete heart blockages. The existing procedures for lead placement, involving surgical stitches or direct electrode insertion into the heart tissue, can cause trauma during both the insertion and removal processes. This increases the likelihood of tissue damage, bleeding, and device malfunction. Now, new research, published in the journal Science Translational Medicine, has demonstrated findings that could offer a potential platform for adhesive bioelectronic devices for cardiac monitoring, diagnosis, and treatment, and pave the way for the future development of bioadhesive electronics.

A team from the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) has introduced a 3D-printable bioadhesive pacing lead that can directly interface with heart tissue, facilitating minimally invasive adhesive implantation and offering an easy detachment method for gentle removal. This innovation represents the first bioadhesive version of a temporary cardiac pacing lead that can be attached and detached on-demand, improving safety and bioelectronic performance with a trauma-free application and removal process. The development of this bioadhesive pacing lead merges several technologies previously developed by the team in the fields of bioadhesives, bioelectronics, and 3D printing.


Image: Pacing leads are routinely used to monitor patients and protect against the risk of postoperative arrhythmias (Photo courtesy of MIT)
Image: Pacing leads are routinely used to monitor patients and protect against the risk of postoperative arrhythmias (Photo courtesy of MIT)

The MIT researchers developed 3D-printable bioadhesive materials by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to enhance electrical conductivity. The resulting bioadhesive showed mechanical properties comparable to cardiac tissue and demonstrated strong adherence, ensuring stable electrical connectivity. In experimental studies using rat and porcine models, the bioadhesive pacing lead adhered solidly to cardiac tissue without causing visible tissue damage or bleeding during application or on-demand detachment. The device was compatible with standard clinical pacing systems and maintained a reliable electrical connection for cardiac monitoring and pacing over a period of 10 to 14 days in the animal models. These findings validate the potential of using printable adhesive electronics for cardiac pacing applications.

Related Links:
MIT


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Hydrogen Peroxide & Plasma Sterilizer
130HPO

Latest Surgical Techniques News

Breakthrough AR Surgical System Brings Precision-Enhanced Visualization into the OR

Advances in Image-Guided Methods Enabling Intelligent Surgical Robots for Precise Procedures

Augmented Reality Headset Gives Surgeons "X-Ray Vision" During Procedures