We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Miniature Soft Lithium-Ion Battery Could Be Used as Defibrillator During Surgery

By HospiMedica International staff writers
Posted on 25 Oct 2024
Image: The tiny battery features important capabilities that enable a variety of biomedical applications (Photo courtesy of Yujia Zhang/Oxford University)
Image: The tiny battery features important capabilities that enable a variety of biomedical applications (Photo courtesy of Yujia Zhang/Oxford University)

The development of tiny smart devices, measuring just a few cubic millimeters, requires equally miniature power sources. For minimally invasive biomedical devices that interact with biological tissues, these power sources must be made from soft materials. Ideally, they should also exhibit characteristics such as high capacity, biocompatibility, biodegradability, triggerable activation, and the capability for remote control. So far, no battery has managed to meet all of these criteria all at once. Now, a team of researchers has made significant progress toward developing miniature, soft batteries suitable for various biomedical applications, including the defibrillation and pacing of heart tissues.

Researchers at the University of Oxford (Oxford, UK) have designed a small, soft lithium-ion battery made from biocompatible hydrogel droplets. The assembly of three microscale droplets, each with a volume of 10 nanoliters, is achieved using surfactant-supported assembly (a method facilitated by soap-like molecules), a technique the same group reported last year in the journal Nature. Different lithium-ion particles contained in each end of the battery generate the output energy. The droplet battery is activated by light, can be recharged, and is biodegradable after use. To date, it is the smallest hydrogel lithium-ion battery and also boasts a superior energy density.

In proof-of-concept heart treatments conducted in the laboratory, the researchers utilized the droplet battery to power the movement of charged molecules between synthetic cells and to control the beating and defibrillation of mouse hearts. The findings, published in the journal Nature Chemical Engineering, show that by incorporating magnetic particles to regulate movement, the battery can also serve as a mobile energy carrier. This proof-of-concept application in animal models marks an exciting new direction for wireless and biodegradable devices in managing arrhythmias. The researchers anticipate that this tiny, versatile battery, especially relevant for small-scale robots in bioapplications, will create new possibilities in various fields, including clinical medicine.


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
40/80-Slice CT System
uCT 528
New
Oxygen Concentrator
ZH-A51

Latest Surgical Techniques News

Microscopic Wearables Snugly Wrap Around Neurons to Probe Brain’s Subcellular Regions

Batteryless, Wireless Stent Sensor Warns of Blockages in Bile Duct

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm