We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News Medica 2024 AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Tiny Mechanical Wrist Advances Needlescopic Surgery

By HospiMedica International staff writers
Posted on 11 Aug 2015
Surgical robots with steerable needles can now be equipped with tiny mechanical wrists that give new dexterity to needlescopic (microlaparoscopic) surgery.

Developed by researchers at Vanderbilt University (Nashville, TN, USA) the new wrists are less than 2-mm thick, and are designed to provide needlescopic tools with a degree of dexterity previously lacking. Not only will this allow surgeon-operators to perform a number of new procedures (such as precise resections and suturing that have not been possible previously), but it will also allow the use of needles in places that have so far been beyond reach, such as the nose, throat, ears, and brain.

Image: A curette mounted upon the tiny nitinol wrist (Photo courtesy of Vanderbilt University).
Image: A curette mounted upon the tiny nitinol wrist (Photo courtesy of Vanderbilt University).

Needlscopic concentric tube robots are based on a series of telescoping tubes made of nitinol. Each of the tubes has a different intrinsic curvature; by precisely rotating, extending, and retracting the tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body. The design allows the needles to operate in areas of the body that neither manual endoscopic instruments nor the da Vinci robot can reach. However, the usefulness of concentric tube robots was limited by the fact that the needles didn’t have a wrist.

The researchers therefore developed a wrist that also consists of a nitinol tube, but with several asymmetric cutouts. Pulling on an actuation tendon that runs through it causes the tube to bend by up to 90 degrees; when tension on the tendon is released, the tube springs back to its original shape. The researchers mounted a curette on the tiny (1.16 mm) wrist, and succeeded in bending it in various directions. The study describing the new wrist was presented at the annual International Conference on Robotics and Automation, held during May 2015 in Seattle (WA, USA).

“Adding the wrists to the steerable needles greatly expands the system’s usefulness. There are a myriad of potential applications in some really exciting areas such as endoscopic neurosurgery, operating within small lumens such as the ear, bronchus, urethra, etc.,” added professor of urological surgery S. Duke Herrell, MD, who is consulting on the project. “This would allow us to do surgeries that at present require much larger incisions and may even enable us to perform operations that are not feasible at present.”

Related Links:

Vanderbilt University



Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Anterior Cervical Plate System
XTEND
New
Monitor Cart
Tryten S5

Latest Surgical Techniques News

Endoscopic Surgical System Enables Remote Robot-Assisted Laparoscopic Hysterectomy

Novel Neural Interface to Help Diagnose and Treat Neurological Disorders with Minimal Surgical Risks

New Lens System for Endoscopes Offers Physicians Unprecedented View of Inside the Body