Sharkskin Surface Topography Inhibits Bacterial Growth
By HospiMedica International staff writers Posted on 07 Jan 2009 |
A new way to control infections on artificial surfaces, based on the physical properties of a shark's skin, is able to inhibit the growth of microorganisms and bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.
The Sharklet surface technology antibacterial properties do not derive from a chemical characteristic, but rather from the shape and microscopic pattern alone. The surface technology is comprised of billions of tiny, raised, microscopic sections that mimic the height, width, length, and curvature of natural sharkskin surface. Each diamond shaped section measures 25 microns across, or about a fifth of the thickness of a human hair, and contains seven raised ribs of varying length that various microorganisms find inhospitable. The sharkskin patterns are etched using a technique called deep ion lithography, and can be embedded onto the surfaces of medical devices such as catheters or artificial hips, as well as medical care equipment such as hospital beds, and even door knobs, and are capable of controlling bacterial growth for up to 21 days.
The Sharklet pattern has been tested and proven effective against plant, animal, and bacterial organisms, and can it be tuned to evoke a specific bioresponse from organisms. While not discernable to the naked eye or easily felt to the touch, the surface technology has demonstrated in laboratory tests to be inhospitable to bacterial growth and biofilm formation, when compared to smooth surfaces. Sharklet surface technology was developed by Sharklet Technologies (Alachua, FL, USA).
"It's the first nontoxic, long lasting, and no-kill surface to control the growth of harmful microorganisms,” said Mark Spiecker, vice president of operations at Sharklet.
A general rule of the ocean is that slow moving marine animals, like whales, are host to organisms such as barnacles and algae, while fast moving animals are generally clean. Certain species of slow-moving sharks seem to violate this rule, however, staying relatively clean due in part to their unique skin pattern. Sharkskin is made of a matrix of tiny, hard, tooth-like structures called dermal denticles or placoid scales. These structures are shaped like curved, grooved teeth and they make the skin a very tough armor with a texture like sandpaper. They have the same structure as a tooth with an outer layer of enamel, dentine, and a central pulp cavity. These scales also help the shark swim more quickly because their streamlined shapes helps decrease the friction of the water flowing along the shark's body by channeling it through grooves.
Related Links:
Sharklet Technologies
The Sharklet surface technology antibacterial properties do not derive from a chemical characteristic, but rather from the shape and microscopic pattern alone. The surface technology is comprised of billions of tiny, raised, microscopic sections that mimic the height, width, length, and curvature of natural sharkskin surface. Each diamond shaped section measures 25 microns across, or about a fifth of the thickness of a human hair, and contains seven raised ribs of varying length that various microorganisms find inhospitable. The sharkskin patterns are etched using a technique called deep ion lithography, and can be embedded onto the surfaces of medical devices such as catheters or artificial hips, as well as medical care equipment such as hospital beds, and even door knobs, and are capable of controlling bacterial growth for up to 21 days.
The Sharklet pattern has been tested and proven effective against plant, animal, and bacterial organisms, and can it be tuned to evoke a specific bioresponse from organisms. While not discernable to the naked eye or easily felt to the touch, the surface technology has demonstrated in laboratory tests to be inhospitable to bacterial growth and biofilm formation, when compared to smooth surfaces. Sharklet surface technology was developed by Sharklet Technologies (Alachua, FL, USA).
"It's the first nontoxic, long lasting, and no-kill surface to control the growth of harmful microorganisms,” said Mark Spiecker, vice president of operations at Sharklet.
A general rule of the ocean is that slow moving marine animals, like whales, are host to organisms such as barnacles and algae, while fast moving animals are generally clean. Certain species of slow-moving sharks seem to violate this rule, however, staying relatively clean due in part to their unique skin pattern. Sharkskin is made of a matrix of tiny, hard, tooth-like structures called dermal denticles or placoid scales. These structures are shaped like curved, grooved teeth and they make the skin a very tough armor with a texture like sandpaper. They have the same structure as a tooth with an outer layer of enamel, dentine, and a central pulp cavity. These scales also help the shark swim more quickly because their streamlined shapes helps decrease the friction of the water flowing along the shark's body by channeling it through grooves.
Related Links:
Sharklet Technologies
Latest Critical Care News
- AI Model Identifies AF Patients Requiring Blood Thinners to Prevent Stroke
- Soft Robot Intubation Device Could Save Lives
- Bee-Sting Inspired Wearable Microneedles to Revolutionize Drug Delivery
- Wearable Smart Patch Runs Tests Using Sweat Instead of Blood
- AI Improves Prediction of CKD Progression to End Stage Renal Disease
- First-Of-Its-Kind Online Tool to Revolutionize Treatment of High Blood Pressure
- Temperature-Sensing Patch Enables Early Breast Cancer Detection
- AI Stethoscope Detects Three Heart Conditions In 15 Seconds
- AI Powered Mini-Camera Predicts Recurrent Heart Attack
- Breakthrough Metamaterial Technology Paves Way for Next-Gen Wearable Devices
- AI Tool Helps Pinpoint Problem Heart Cells in Ventricular Tachycardia
- AI-Enhanced ECG Identifies Patients at Future Risk of Heart Block
- Bee-Stinger-Inspired Microneedle Delivers Drugs, Stimulates Healing and Monitors Wounds
- Blood Markers and ECG Patterns Could Provide Early Warning for Hidden Heart Risks in ICUs
- Multidimensional Diagnostic Approach Identifies Previously Missed At-Risk COPD Patients
- AI Tool Predicts Markers of Alzheimer’s Disease
Channels
Surgical Techniques
view channel
Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next
Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more
World’s First Custom Anterior Cervical Spine Surgery Performed Using Personalized Implant
Anterior cervical fusion has been performed since the 1950s and is one of the most common spine procedures. Traditional implants are designed as one-size-fits-all, which can affect spinal alignment, healing,... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more