We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

3D-Printed Cast Improves Patient Comfort

By HospiMedica International staff writers
Posted on 08 Jul 2013
Image: The Cortex 3D custom-printed nylon cast (Photo courtesy of Jake Evill Design).
Image: The Cortex 3D custom-printed nylon cast (Photo courtesy of Jake Evill Design).
A concept exoskeletal cast design provides a localized support system that is fully ventilated, extremely light, waterproof, hygienic, recyclable, and stylish.

The Cortex cast is a three-dimensional (3D) custom-printed nylon cast generated from a scan of a patient’s limb and an X-ray to identify the zones that need the most support. The resulting fabricated cast is thinner and lighter than traditional plaster casts, yet at the same time is just as strong and durable; the denser areas of the cast’s lattice provide additional stability and support at and around the point of the fracture. Moreover, as the Cortex is fully ventilated, showering is easier, and smell and itch are not an issue as the skin is easily accessible.

The exoskeletal cast is delivered printed and ready to wear. One side is open to enable placement, and once fitted, it is snapped close with durable built-in fasteners. The Cortex cast mesh grain is designed to be tightest at the fracture sight, providing extra supports where needed. The cast design also uses less material to produce, and since the material is recyclable for another cast, there is less overall waste. The concept design is the brainchild of Jake Evill, a graduate of the architecture and design school at Victoria University (Wellington, New Zealand).

“Cortex exoskeletal cast provides a highly technical and trauma zone localized support system,” said Mr. Evill. “Patients would first receive an X-ray to pinpoint the nature of the break and would next have their arm scanned to determine the outer shape of their limb. Lastly the Cortex cast would be 3D-printed, with optimized levels of support around the break area to provide a snug fit.”

An orthopedic cast is a shell, frequently made from plaster, encasing a limb (or other parts of the body) to hold broken bones in place until healing is confirmed. The cast is made of cotton bandages that have been combined with plaster of Paris (calcined gypsum), which hardens after it has been wetted. Bandages of synthetic materials are also available, often knitted fiberglass bandages impregnated with polyurethane. While these are lighter and dry much faster, plaster can fitted more snugly, and therefore makes for a more comfortable fit. In addition, plaster is much smoother and does not snag clothing or abrade the skin.

Related Links:

Jake Evill Design
Victoria University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Electric Bed
DIXION Intensive Care Bed
Adjustable Mobile Barrier
M-458

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more