NanoSeptic Surface Effective Against a Variety of Pathogens
|
By HospiMedica International staff writers Posted on 02 Apr 2014 |

Image: A door handle coated with a NanoSeptic Surface (Photo courtesy of NanoTouch Materials).
An innovative disruptive technology provides a new tool in the fight against infection and illness of even the most dangerous pathogens.
The NanoSeptic surface, developed in the Center for Advanced Engineering and Research (CAER; Forest, VA, USA) and manufactured by NanoTouch Materials (Forest, VA, USA), is composed of antimicrobial components that are molecularly bonded on a nanoscale, providing a nonleaching, self-cleaning surface that constantly traps and kills bacteria, viruses, and fungi through a catalytic oxidation process using available light. The surfaces also eventually degrade the endotoxins the are the result of bacterial death.
The surfaces work constantly kill pathogens utilizing nanotechnology rather than chemicals, diluted poisons, or heavy metals, and for a period that lasts 6-12 months, as long as he surface is not worn. Possible applications and targets include facility touch points such as door push-pads and handle wraps, as well as portable mats for counters, tray tables, and bathroom vanities. The surfaces were tested at King Abdul-Aziz University Hospital (KSU; Riyadh, Saudi Arabia) against several types of Gram positive, Gram negative, and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria.
“After receiving the initial test results, we started calling the NanoSeptic products 'Magical Paper' because of their ability to kill bacteria,” said Amr Saeb, PhD, head of biotechnology at KSU. “This product was able to Kill 100% of E. coli and P. aeruginosa and 88% of MRSA germs after only one hour. As a microbial geneticist, I am really excited by the latest approaches to kill pathogens in a safe and environmentally conscious way without generating resistant microbes which are difficult to treat.”
“At NanoTouch, we're so excited that research centers across the globe are validating our ongoing mission—to change the world.” said Dennis Hackemeyer, cofounder of NanoTouch Materials. “Another exciting aspect of NanoSeptic products is the visual communication which has the potential to change behavior. Visitors gravitate toward touching the NanoSeptic surface which keeps other surfaces cleaner.”
Related Links:
Center for Advanced Engineering and Research
NanoTouch Materials
The NanoSeptic surface, developed in the Center for Advanced Engineering and Research (CAER; Forest, VA, USA) and manufactured by NanoTouch Materials (Forest, VA, USA), is composed of antimicrobial components that are molecularly bonded on a nanoscale, providing a nonleaching, self-cleaning surface that constantly traps and kills bacteria, viruses, and fungi through a catalytic oxidation process using available light. The surfaces also eventually degrade the endotoxins the are the result of bacterial death.
The surfaces work constantly kill pathogens utilizing nanotechnology rather than chemicals, diluted poisons, or heavy metals, and for a period that lasts 6-12 months, as long as he surface is not worn. Possible applications and targets include facility touch points such as door push-pads and handle wraps, as well as portable mats for counters, tray tables, and bathroom vanities. The surfaces were tested at King Abdul-Aziz University Hospital (KSU; Riyadh, Saudi Arabia) against several types of Gram positive, Gram negative, and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria.
“After receiving the initial test results, we started calling the NanoSeptic products 'Magical Paper' because of their ability to kill bacteria,” said Amr Saeb, PhD, head of biotechnology at KSU. “This product was able to Kill 100% of E. coli and P. aeruginosa and 88% of MRSA germs after only one hour. As a microbial geneticist, I am really excited by the latest approaches to kill pathogens in a safe and environmentally conscious way without generating resistant microbes which are difficult to treat.”
“At NanoTouch, we're so excited that research centers across the globe are validating our ongoing mission—to change the world.” said Dennis Hackemeyer, cofounder of NanoTouch Materials. “Another exciting aspect of NanoSeptic products is the visual communication which has the potential to change behavior. Visitors gravitate toward touching the NanoSeptic surface which keeps other surfaces cleaner.”
Related Links:
Center for Advanced Engineering and Research
NanoTouch Materials
Latest Critical Care News
- Skin-Mounted 3D Microfluidic Device Analyzes Sweat for Real-Time Health Assessment
- New Therapeutic Brain Implants to Eliminate Need for Surgery
- Stem Cell Patch Gently Heals Damaged Hearts Without Open-Heart Surgery
- Biomaterial Vaccines to Make Implanted Orthopedic Devices Safer
- Deep Learning Model Predicts Sepsis Patients Likely to Benefit from Steroid Treatment
- Programmable Drug-Delivery Patch Promotes Healing and Regrowth After Heart Attack
- Breakthrough Ultrasound Technology Measures Blood Viscosity in Real Time
- Magnetically Activated Microscopic Robotic Swarms Could Deliver Medicine Inside Body
- Frequent ECG Use Can Identify Young People at Risk of Cardiac Arrest
- Ultrasound Controlled Artificial Muscles Pave Way for Soft Robots
- AI-Powered Alerts Reduce Kidney Complications After Heart Surgery
- Algorithm Predicts and Lengthens Pacemaker Battery Life
- Novel Pill Could Mimic Health Benefits of Bariatric Surgery
- AI Models Identify Patient Groups at Risk of Being Mistreated in Hospital ED
- CPR Guidelines Updated for Pediatric and Neonatal Emergency Care and Resuscitation
- Ingestible Capsule Monitors Intestinal Inflammation
Channels
Surgical Techniques
view channel
Drug-Coated Balloons Can Replace Stents Even in Larger Coronary Arteries
Narrowed or blocked arteries pose a major global health burden, often leading to heart attacks, heart failure, or stroke when blood flow becomes compromised. Traditional balloon angioplasty can reopen... Read more
Magnetic Kidney Stone Retrieval Device Outperforms Ureteroscopic Laser Lithotripsy
Kidney stone disease affects millions worldwide and often requires ureteroscopic laser lithotripsy, yet fragment removal remains inefficient. Many patients are left with residual pieces that can cause... Read more
Absorbable Skull Device Could Replace Traditional Metal Implants Used After Brain Surgery
Closing the skull safely after neurosurgery remains a major clinical challenge, as traditional metal or semi-absorbable fixation devices can interfere with imaging, degrade unpredictably, or persist long... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







