We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Gold Nanoparticles Prevent Infection on Orthopedic Implants

By HospiMedica International staff writers
Posted on 23 Jul 2014
Gold (Au) nanoparticles help prevent the formation of antibiotic resistant biofilm on the surface of orthopedic implants, according to a new study.

Researchers at the Shanghai Institute of Ceramics (CIS; China) extrapolated that since gold nanoparticles can pass electrons to titanium dioxide (TiO2), they could be used to induce bacterial death. Due to a phenomenon known as localized surface plasmon resonance (a collective oscillations of electrons), an Au@TiO2 system could effectively kill bacteria in darkness by affecting respiratory electrons of the bacterial membrane, making them steadily lose electrons by transferring them first to the Au nanoparticles and then to TiO2, until they die.

To do so, they prepared close-packed TiO2 nanotube arrays on a metallic Ti surface by electro-chemical anodization. Then, using magnetron sputtering, they deposited Au nanoparticles to coat the Ti surfaces. The researchers then allowed Staphylococcus aureus and Escherichia coli to grow separately on the arrays. They found that both organisms were highly unsuccessful, exhibiting profuse membrane damage and cell leakage. The study describing the technology was published on June 30, 2014, in the journal Applied Physics Letters.

“Implant-associated infections have become a stubborn issue that often causes surgery failure. Designing implants that can kill bacteria while supporting bone growth is an efficient way to enhance in vivo osteointegration,” concluded senior author Prof. Xuanyong Liu, PhD. “This work provides insights for the better understanding and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.”

TiO2 is able to kill bacteria itself due to its properties as a photocatalyst; when the metal is exposed to light, it becomes energetically excited by absorbing photons. This generates electron-hole pairs, turning Ti into a potent electron acceptor that can destabilize cellular membrane processes by usurping their electron transport chain's terminal acceptor. The dark conditions inside the human body, however, limit the bacteria-killing efficacy of TiO2. Gold nanoparticles, though, can continue to act as antibacterial terminal electron acceptors under darkness, due to localized surface plasmon resonance at the interface between conductors and dielectrics, such as between gold and TiO2.

Related Links:

Shanghai Institute of Ceramics



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Radiation Safety Barrier
RayShield Intensi-Barrier
Open Stapler
PROXIMATE Linear Cutter

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more