We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

3D-Printed Anatomical Specimens Mark New Era for Medical Training

By HospiMedica International staff writers
Posted on 06 Aug 2014
Image: Part of the 3D Printed Anatomy Series to help revolutionize medical education and training worldwide, especially where cadaver use is problematical (Photo courtesy of Monash University).
Image: Part of the 3D Printed Anatomy Series to help revolutionize medical education and training worldwide, especially where cadaver use is problematical (Photo courtesy of Monash University).
Creators of a unique kit containing anatomical body parts produced by 3D printing say it will revolutionize medical education and training worldwide, especially where cadaver use is problematical.

The "3D Printed Anatomy Series", developed by experts from Monash University (VIC, Australia), may be the first commercially available resource of its kind. The kit contains no human tissue yet provides all the major body parts required to teach anatomy of the limbs, chest, abdomen, head, and neck. “Our 3D printed series can be produced quickly and easily, and unlike cadavers they won’t deteriorate – so they are a cost-effective option too,” said Prof. Paul McMenamin, director of the university’s Center for Human Anatomy Education, adding that the kit would dramatically improve knowledge of trainees and could even contribute to the development of new surgical treatments. 3D-printed kits will also likely play an important role in pathology teaching.

“For centuries cadavers bequested to medical schools have been used to teach students about human anatomy, a practice that continues today. However many medical schools report either a shortage of cadavers, or find their handling and storage too expensive as a result of strict regulations governing where cadavers can be dissected,” said Prof. McMenamin, “We believe our version, which looks just like the real thing, will make a huge difference.” There are also health and safety considerations for students and staff exposed to formalin-containing embalming fluids for cadavers. The kit, set to go on sale later this year, could have special impact in developing countries where cadavers aren’t readily available or are prohibited for cultural or religious reasons.

After scanning real anatomical specimens with either a CT or a surface laser scanner, the body parts are 3D-printed either in a plaster-like powder or in plastic – resulting in high resolution, accurate color reproductions. “Radiographic imaging, such as CT, is a really sophisticated means of capturing information in very thin layers, almost like the pages of a book. By taking this data and making a 3D rendered model we can then color that model and convert that to a file format that the 3D printer uses to recreate, layer by layer, a three-dimensional body part to scale,” said Prof. McMenamin.

The range of possible uses of 3D printing for reproducing accurate replicas of anatomical material are made possible by the application of technological advances that allow the physical printing of computer generated 3D data. The researchers are also exploring the use of multiple-material printing and the printing of cell and tissue data from confocal microscopic studies.

The work was described by McMenamin et al. in the journal Anatomical Sciences Education, June 27, 2014, online ahead of print.

Related Links:

Monash University


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Radiation Safety Barrier
RayShield Intensi-Barrier
MRI System
nanoScan MRI 3T/7T

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more