Innovative Wound Dressing Wraps Burn Wounds
By HospiMedica International staff writers Posted on 27 Aug 2014 |

Image: PLLA biodegradable polyester nanosheets (Photo courtesy of Tokai University).
A new nanometric biomaterial coating hugs body contours like cling-wrap, preventing bacteria from colonizing wounds.
Researchers at Tokai University (Tokyo, Japan) developed the nanosheets from poly-L lactic acid (PLLA), a biodegradable polyester that when centrifuged with water breaks up into small pieces. When poured onto a flat surface, the PLLA emulsion dries into a patchwork that forms as a single nanosheet. The researchers then tested the nanosheets’ ability to coat small and irregular shapes by dipping various objects into the mixture, including a mouse’s paw. The nanosheet patchwork effectively covered the surface of the mouse’s digits, and after it dried, it clung in place.
The researchers then tested the nanosheets on burn wounds, and found that the PLLA dressing could protect wounds against the common bacteria Pseudomonas aeruginosa for three continuous days. With an additional coating, the nanosheets kept bacteria at bay for a total of six days, which suggests that its use could also reduce the number of dressing changes needed. In preparation for projected human clinical trials, the researchers are currently planning large-scale animal and safety tests.
In addition to PLLA nanosheets, the researchers have recently started developing a novel set of similar, super-flexible, patchwork coatings composed of polymers with a phosphorylcholine group, a range of materials that are compatible with blood and could thus act as coatings for medical devices, such as catheters. The study describing nanosheets and its application as a burn wound dressing was presented at the national meeting & exposition of the American Chemical Society (ACS), held during August 2014 in San Francisco (CA, USA).
“Existing wound dressings work well when it comes to treating burns on relatively flat and broad areas. But the human body has curves, wrinkles and ridges that present problems for these dressings,” said lead author and study presenter Yosuke Okamura, PhD. “The nanosheets can adhere not only to flat surfaces, but also to uneven and irregular surfaces without adding any adhesives.”
PLLA is a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch, tapioca roots, or sugarcane. It can be processed by extrusion, injection molding, casting, and spinning, providing access to a wide range of materials. Since it is biodegradable, PLLA is used as medical implants in the form of anchors, screws, plates, pins, rods, and as a mesh, breaking down inside the body within 6 months to 2 years.
Related Links:
Tokai University
Researchers at Tokai University (Tokyo, Japan) developed the nanosheets from poly-L lactic acid (PLLA), a biodegradable polyester that when centrifuged with water breaks up into small pieces. When poured onto a flat surface, the PLLA emulsion dries into a patchwork that forms as a single nanosheet. The researchers then tested the nanosheets’ ability to coat small and irregular shapes by dipping various objects into the mixture, including a mouse’s paw. The nanosheet patchwork effectively covered the surface of the mouse’s digits, and after it dried, it clung in place.
The researchers then tested the nanosheets on burn wounds, and found that the PLLA dressing could protect wounds against the common bacteria Pseudomonas aeruginosa for three continuous days. With an additional coating, the nanosheets kept bacteria at bay for a total of six days, which suggests that its use could also reduce the number of dressing changes needed. In preparation for projected human clinical trials, the researchers are currently planning large-scale animal and safety tests.
In addition to PLLA nanosheets, the researchers have recently started developing a novel set of similar, super-flexible, patchwork coatings composed of polymers with a phosphorylcholine group, a range of materials that are compatible with blood and could thus act as coatings for medical devices, such as catheters. The study describing nanosheets and its application as a burn wound dressing was presented at the national meeting & exposition of the American Chemical Society (ACS), held during August 2014 in San Francisco (CA, USA).
“Existing wound dressings work well when it comes to treating burns on relatively flat and broad areas. But the human body has curves, wrinkles and ridges that present problems for these dressings,” said lead author and study presenter Yosuke Okamura, PhD. “The nanosheets can adhere not only to flat surfaces, but also to uneven and irregular surfaces without adding any adhesives.”
PLLA is a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch, tapioca roots, or sugarcane. It can be processed by extrusion, injection molding, casting, and spinning, providing access to a wide range of materials. Since it is biodegradable, PLLA is used as medical implants in the form of anchors, screws, plates, pins, rods, and as a mesh, breaking down inside the body within 6 months to 2 years.
Related Links:
Tokai University
Latest Surgical Techniques News
- World’s First Custom Anterior Cervical Spine Surgery Performed Using Personalized Implant
- Implantable Biodegradable Scaffold Helps Broken Bones Regrow Quickly
- First Human Spinal Cord Repair Using Patient Own Cells Could Cure Paralysis
- 'Dual-Mode' Tracer Enables Surgeons to See and Hear Prostate Cancer
- Pioneering One-Stage Hybrid Surgery Ensures Safer Outcomes in Brain and Spine Tumors
- Reimplanting Lab-Grown Patient Cartilage Accelerates Healing After Hip Surgery
- Diamond-Based Sensor Pinpoints Metastasized Cancer for Surgical Removal
- Minimally Invasive Valve Repair Improves Survival in Elderly AFMR Patients
- Tiny Soft Robots Dissolve Painful Kidney Stones with Targeted Drug Delivery
- Implantable 3D Patch Closes and Repairs Heart Defects
- New Endoscopy Technology Enables Early Detection of Esophageal Cancer
- New Implant Enables Women to Access Hip Resurfacing Surgery
- Surgical Micro-Robot Sees and Corrects Movements from Within
- AI Cuts Diagnostic Delays in Prostate Cancer
- 'Google Maps' for Surgeons to Help Perform Complex Robot-Assisted Esophagectomy
- New Technique for Measuring Brain Blood Flow During Surgery Can Prevent Strokes
Channels
Critical Care
view channel
Bee-Sting Inspired Wearable Microneedles to Revolutionize Drug Delivery
Neurological diseases affect millions of people worldwide, creating a pressing demand for long-term treatments that are both effective and patient-friendly. Conventional injections, while reliable, are... Read more
Wearable Smart Patch Runs Tests Using Sweat Instead of Blood
Blood sampling has long been the standard for monitoring internal health, but it is invasive, costly, and unsuitable for continuous tracking. Sweat, by contrast, is non-invasive and abundant, but conventional... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more