Light Therapy Could Treat Vascular Constriction Diseases
|
By HospiMedica International staff writers Posted on 30 Nov 2014 |
A new study describes a receptor on blood vessels that cause them to relax in response to light, making it potentially useful in treating vascular diseases.
Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) used polymerase chain reaction (PCR) to demonstrate that melanopisn (Opn4, a member of a group of non-image-forming light receptors) is expressed in blood vessels in mice via a photorelaxation mechanism. Further force-tension myography tests in the mice tails demonstrated that vessels in mice that lacked Opn4 failed to display photorelaxation, which was also inhibited by an Opn4-specific small-molecule inhibitor.
The researchers also found that vasorelaxation is wavelength-specific, with a maximal response at about 430–460 nm. Blue light (455 nm) was found to regulate tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. The researchers also discovered that photorelaxation did not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling, but was associated with vascular hyperpolarization. The study was published in the November 17, 2014, issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS).
“If we can develop novel ways of delivering light to blood vessels, this molecular switch for relaxation could be harnessed in all types of vascular disease treatment,” said senior author Dan Berkowitz, MD, of the JHU departments of anesthesiology, critical care, and biomedical engineering. “We plan to use high-intensity light-emitting diodes (LEDs) incorporated into gloves as a potential mode of therapy for these patients. Additionally, socks with LEDs could be used in diabetic patients to potentially enhance blood flow and heal chronic ischemic ulcers.”
Melanopsin is also in found intrinsically photosensitive retinal ganglion cells, which do perceive light but are much slower to react to visual changes than the better-known rod and cone cells. They have been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. Another type of melanopsin based receptor is involved in the association between light sensitivity and migraine pain.
Related Links:
Johns Hopkins University
Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) used polymerase chain reaction (PCR) to demonstrate that melanopisn (Opn4, a member of a group of non-image-forming light receptors) is expressed in blood vessels in mice via a photorelaxation mechanism. Further force-tension myography tests in the mice tails demonstrated that vessels in mice that lacked Opn4 failed to display photorelaxation, which was also inhibited by an Opn4-specific small-molecule inhibitor.
The researchers also found that vasorelaxation is wavelength-specific, with a maximal response at about 430–460 nm. Blue light (455 nm) was found to regulate tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. The researchers also discovered that photorelaxation did not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling, but was associated with vascular hyperpolarization. The study was published in the November 17, 2014, issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS).
“If we can develop novel ways of delivering light to blood vessels, this molecular switch for relaxation could be harnessed in all types of vascular disease treatment,” said senior author Dan Berkowitz, MD, of the JHU departments of anesthesiology, critical care, and biomedical engineering. “We plan to use high-intensity light-emitting diodes (LEDs) incorporated into gloves as a potential mode of therapy for these patients. Additionally, socks with LEDs could be used in diabetic patients to potentially enhance blood flow and heal chronic ischemic ulcers.”
Melanopsin is also in found intrinsically photosensitive retinal ganglion cells, which do perceive light but are much slower to react to visual changes than the better-known rod and cone cells. They have been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. Another type of melanopsin based receptor is involved in the association between light sensitivity and migraine pain.
Related Links:
Johns Hopkins University
Latest Critical Care News
- Battery-Free Nano-Sensors Pave Way for Next-Generation Wearables
- Imaging Technology Detects Early Signs of Cardiovascular Risk Through Skin
- New Therapeutic Approach Marks Breakthrough in Pediatric Heart Disease
- AI Model Accurately Identifies Prediabetics Using Only ECG Data
- Injectable Disease-Fighting Nanorobots to Improve Precision Cancer Therapy
- Web-Based Tool Enables Early Detection and Prevention of Chronic Kidney Disease
- Tiny Sensor to Transform Head Injury Detection
- Bacterial Behavior Breakthrough to Improve Infection Prevention in Biomedical Devices
- Implanted 'Living Skin' Indicates Internal Inflammation Without Blood Samples
- AI Tool Improves Speed and Accuracy of Cervical Cancer Treatment Planning
- Ultrasonic Sensor Enables Cuffless and Non-Invasive Blood Pressure Measurement
- Simple Change in Sepsis Treatment Could Save Thousands of Lives
- AI-Powered ECG Analysis Enables Early COPD Detection
- Soft Wireless Implant Treats Inflammatory Bowel Disease
- Pill Reports from Stomach When It Has Been Swallowed
- Wireless Sensing Technology Enables Touch-Free Diagnostics of Common Lung Diseases
Channels
Artificial Intelligence
view channelSurgical Techniques
view channel
3D Bioprinting Pushes Boundaries in Quest for Custom Livers
Chronic liver failure and donor organ scarcity leave thousands of patients at risk of death while awaiting transplantation. To help address this challenge, a multidisciplinary team at the University of... Read more
First-Of-Its-Kind Probe Monitors Fetal Health in Utero During Surgery
Fetal surgery is performed to treat life-threatening conditions before birth, but monitoring a fetus during these procedures remains extremely limited. Clinicians currently rely on intermittent ultrasound... Read moreLight-Activated Tissue Adhesive Patch Achieves Rapid and Watertight Neurosurgical Sealing
Durotomy, a tear in the dura mater during neurosurgery, can lead to cerebrospinal fluid leakage, delayed healing, headaches, and serious infections. Achieving a reliable, watertight dural closure is therefore... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
WHX in Dubai (formerly Arab Health) to debut specialised Biotech & Life Sciences Zone as sector growth accelerates globally
World Health Expo (WHX) in Dubai, formerly Arab Health, which takes place from 9-12 February 2026 at the Dubai Exhibition Centre (DEC), has officially announced the launch of a new dedicated Biotech &... Read more
WHX in Dubai (formerly Arab Health) to bring together key UAE government entities during the groundbreaking 2026 edition
World Health Expo (WHX), formerly Arab Health, will bring together the UAE’s health authorities and leading healthcare sector bodies when the exhibition debuts at the Dubai Exhibition Centre (DEC) from... Read more
Interoperability Push Fuels Surge in Healthcare IT Market
Hospitals still struggle to reconcile data scattered across electronic health records, laboratory systems, and billing platforms, undermining care coordination and operational efficiency.... Read more







