We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Light Therapy Could Treat Vascular Constriction Diseases

By HospiMedica International staff writers
Posted on 30 Nov 2014
A new study describes a receptor on blood vessels that cause them to relax in response to light, making it potentially useful in treating vascular diseases.

Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) used polymerase chain reaction (PCR) to demonstrate that melanopisn (Opn4, a member of a group of non-image-forming light receptors) is expressed in blood vessels in mice via a photorelaxation mechanism. Further force-tension myography tests in the mice tails demonstrated that vessels in mice that lacked Opn4 failed to display photorelaxation, which was also inhibited by an Opn4-specific small-molecule inhibitor.

The researchers also found that vasorelaxation is wavelength-specific, with a maximal response at about 430–460 nm. Blue light (455 nm) was found to regulate tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. The researchers also discovered that photorelaxation did not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling, but was associated with vascular hyperpolarization. The study was published in the November 17, 2014, issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS).

“If we can develop novel ways of delivering light to blood vessels, this molecular switch for relaxation could be harnessed in all types of vascular disease treatment,” said senior author Dan Berkowitz, MD, of the JHU departments of anesthesiology, critical care, and biomedical engineering. “We plan to use high-intensity light-emitting diodes (LEDs) incorporated into gloves as a potential mode of therapy for these patients. Additionally, socks with LEDs could be used in diabetic patients to potentially enhance blood flow and heal chronic ischemic ulcers.”

Melanopsin is also in found intrinsically photosensitive retinal ganglion cells, which do perceive light but are much slower to react to visual changes than the better-known rod and cone cells. They have been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. Another type of melanopsin based receptor is involved in the association between light sensitivity and migraine pain.

Related Links:

Johns Hopkins University


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
New
Ultrasonic Dissector
SONICBEAT
New
Short Phlebotomy Cart
MSWA-3469-WHT

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more