Light Therapy Could Treat Vascular Constriction Diseases
By HospiMedica International staff writers Posted on 30 Nov 2014 |
A new study describes a receptor on blood vessels that cause them to relax in response to light, making it potentially useful in treating vascular diseases.
Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) used polymerase chain reaction (PCR) to demonstrate that melanopisn (Opn4, a member of a group of non-image-forming light receptors) is expressed in blood vessels in mice via a photorelaxation mechanism. Further force-tension myography tests in the mice tails demonstrated that vessels in mice that lacked Opn4 failed to display photorelaxation, which was also inhibited by an Opn4-specific small-molecule inhibitor.
The researchers also found that vasorelaxation is wavelength-specific, with a maximal response at about 430–460 nm. Blue light (455 nm) was found to regulate tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. The researchers also discovered that photorelaxation did not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling, but was associated with vascular hyperpolarization. The study was published in the November 17, 2014, issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS).
“If we can develop novel ways of delivering light to blood vessels, this molecular switch for relaxation could be harnessed in all types of vascular disease treatment,” said senior author Dan Berkowitz, MD, of the JHU departments of anesthesiology, critical care, and biomedical engineering. “We plan to use high-intensity light-emitting diodes (LEDs) incorporated into gloves as a potential mode of therapy for these patients. Additionally, socks with LEDs could be used in diabetic patients to potentially enhance blood flow and heal chronic ischemic ulcers.”
Melanopsin is also in found intrinsically photosensitive retinal ganglion cells, which do perceive light but are much slower to react to visual changes than the better-known rod and cone cells. They have been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. Another type of melanopsin based receptor is involved in the association between light sensitivity and migraine pain.
Related Links:
Johns Hopkins University
Researchers at Johns Hopkins University (JHU; Baltimore, MD, USA) used polymerase chain reaction (PCR) to demonstrate that melanopisn (Opn4, a member of a group of non-image-forming light receptors) is expressed in blood vessels in mice via a photorelaxation mechanism. Further force-tension myography tests in the mice tails demonstrated that vessels in mice that lacked Opn4 failed to display photorelaxation, which was also inhibited by an Opn4-specific small-molecule inhibitor.
The researchers also found that vasorelaxation is wavelength-specific, with a maximal response at about 430–460 nm. Blue light (455 nm) was found to regulate tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. The researchers also discovered that photorelaxation did not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling, but was associated with vascular hyperpolarization. The study was published in the November 17, 2014, issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS).
“If we can develop novel ways of delivering light to blood vessels, this molecular switch for relaxation could be harnessed in all types of vascular disease treatment,” said senior author Dan Berkowitz, MD, of the JHU departments of anesthesiology, critical care, and biomedical engineering. “We plan to use high-intensity light-emitting diodes (LEDs) incorporated into gloves as a potential mode of therapy for these patients. Additionally, socks with LEDs could be used in diabetic patients to potentially enhance blood flow and heal chronic ischemic ulcers.”
Melanopsin is also in found intrinsically photosensitive retinal ganglion cells, which do perceive light but are much slower to react to visual changes than the better-known rod and cone cells. They have been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. Another type of melanopsin based receptor is involved in the association between light sensitivity and migraine pain.
Related Links:
Johns Hopkins University
Latest Critical Care News
- Cuff-Free Blood Pressure Monitoring Device to Improve Early Detection and Management of Hypertension
- New Understanding of Barrett’s Esophagus Formation to Enable Earlier Intervention and Diagnosis
- 3D Printed Functional Human Islets Could Transform Type 1 Diabetes Treatment
- AI Model Predicts ICU mortality in Heart Failure Patients
- Smart Capsule Offers Real-Time Profiling Across GI Tract
- Ultra-Thin Implant Helps Patients with Spinal Cord Injury Recover Lost Functions
- Portable Cell Therapy Device to Enable Rapid On-Demand Modification of RBCs at POC
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
- Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment
- Self-Healing Skin-Like Material to Find Applications in Health Monitoring, Surgery and Implants
- Highly-Sensitive Electronic Skin Allows Robots to Feel Heat, Pain and Pressure
- AI-Powered Wearable Sensor Predicts Labor Onset in Pregnant Women
Channels
Surgical Techniques
view channel
Breakthrough Polymer Significantly Improves Safety of Implantable Medical Devices
Every year, millions of patients receive implantable cardiovascular devices such as arterial and venous catheters, pacemaker leads, artificial hearts, and vascular prostheses. These devices, typically... Read more
First-Ever Technology Makes Blood Translucent During Surgery
No matter the discipline or scale, bleeding is a regular part of any surgery and can create several challenges. In operating room imaging, seeing through blood in real-time during a surgery has been a... Read more
Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
Smith+Nephew (Hull, UK;) has launched its new TRIGEN MAX Tibia Nailing System for stable and unstable fractures of the tibia, including the shaft. It is the only system to now offer trauma surgeons the... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more