We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Wireless Therapy Device Facilitates Drug Delivery

By HospiMedica International staff writers
Posted on 07 Jan 2015
Image: Schematic model the dissolving silk and magnesium electronic implant (Photo courtesy of Tufts University).
Image: Schematic model the dissolving silk and magnesium electronic implant (Photo courtesy of Tufts University).
A novel electronic implant triggered remotely by a wireless signal delivers heat to infected tissue, enhancing antibiotic release without reducing antibiotic activity.

Developed by researchers at Tufts University (Medford, MA, USA), the implantable therapeutic device was designed to counter Staphylococcus aureus infections. The fully degradable, remotely controlled, therapeutic device can be left behind at a surgical or suturing site for infection management by either thermal treatment and/or by remote triggering of drug release when there is retardation of antibiotic diffusion, in deep infections, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains.

The device includes a serpentine resistor and a power-receiving heater coil made of magnesium that is inserted into a silk protein "pocket" that protected the electronics and controls the dissolution time. The packaging and electronics are turned on remotely after implantation, providing the necessary thermal therapy or to trigger drug delivery; after completion of function, the device is safely resorbed into the body, within a programmable period, obviating the need for secondary surgeries and retrieval. A study describing the device was published in the December 2014 issue of the Proceedings of the National Academy of Sciences of the United States of America (PNAS).

“This is an important demonstration step forward for the development of on-demand medical devices that can be turned on remotely to perform a therapeutic function in a patient and then safely disappear after their use, requiring no retrieval,” said senior author Professor of Biomedical Engineering Fiorenzo Omenetto, PhD. “These wireless strategies could help manage postsurgical infection, for example, or pave the way for eventual 'wi-fi' drug delivery.”

Implantable medical devices typically use non-degradable materials that have limited operational lifetimes and must eventually be removed or replaced.

Related Links:

Tufts University


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Head Rest
Medifa 61114_3

Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more