We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Nanoscale Disruptive Technology Kills Pathogens on Touch

By HospiMedica International staff writers
Posted on 10 Mar 2015
Image: A NanoSeptic self-cleaning surface door handle (Photo courtesy NanoTouch Materials).
Image: A NanoSeptic self-cleaning surface door handle (Photo courtesy NanoTouch Materials).
Innovative surface technology kills pathogens in an environmentally conscious way, without generating resistant microbes which are difficult to treat.

NanoSeptic self-cleaning surfaces are composed of antimicrobial components that provide a non-leaching, self-cleaning surface that constantly kills bacteria, viruses, and fungi utilizing molecularly bonded nanotechnology and a light-powered catalytic oxidation process. The surface is also hydrophilic, so that water, oils, dirt, and other contaminants are actively shed. The surfaces are available in standard sizes for door push pads, door handle wraps, door push bar pads, equipment and cart handle wraps, and even disposable mouse pads. The adhesive wrappings are peeled off and replaced periodically.

Maintenance includes routine cleaning with soap and water or stronger cleansers, and does not affect the efficacy of the surface. While the surfaces are self-cleaning at a microscopic level, they can still become soiled or stained if exposed to coffee, wine, or suchlike, but will continue to function as long as no abrasive products that can physically wear or damage them are used. The NanoSeptic self-cleaning surfaces are manufactured by NanoTouch Materials (Forest, VA, USA), and have an effective life in the healthcare setting of 90 days, as long as he surface is not worn.

“When it comes to healthcare, we’re thrilled that our approach aligns with the Hippocratic Oath which states that doctors should ‘first, do no harm,’” said Dennis Hackemeyer, co-founder of NanoTouch Materials. “Since the NanoSeptic surface doesn’t use chemicals, poisons, or heavy metals, we aren’t adding any toxins to the environment, and it doesn’t contribute to antimicrobial resistance.”

Related Links:

NanoTouch Materials


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Absorbable Monofilament Mesh
Phasix Mesh
Open Stapler
PROXIMATE Linear Cutter

Channels

Surgical Techniques

view channel
Image: The novel approach combining MRI, fluid dynamics, and custom algorithms predicts brain cancer recurrence sites (photo courtesy of AdobeStock)

Novel Method Uses Interstitial Fluid Flow to Predict Where Brain Tumor Can Grow Next

Glioblastoma is one of the most aggressive brain cancers, with patients surviving on average only 15 months after diagnosis. Surgery and radiation can temporarily control the tumor, but the disease almost... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more