We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Lung Simulations Could Improve Respiratory Treatment

By HospiMedica International staff writers
Posted on 02 Aug 2015
Print article
Image: Computer model of SRT delivered to an adult human lung; blue areas receive less (Photo courtesy of Prof. James Grotberg/U-M Engineering).
Image: Computer model of SRT delivered to an adult human lung; blue areas receive less (Photo courtesy of Prof. James Grotberg/U-M Engineering).
An innovative computer model that predicts the flow of liquids in human lungs could provide insight into the treatment of acute respiratory distress syndrome (ARDS).

ARDS is a life-threatening inflammation of the respiratory system that kills 74,000 adults each year in the United States alone. It is most common among patients with lung injury or sepsis, a whole-body inflammation caused by infection. Treatment involves surfactant replacement therapy (SRT) to make it easier for the lungs to inflate, similar to the therapy used in premature babies, who can lack the surfactant necessary to expand their lungs. While SRT has contributed to a dramatic reduction in mortality rates of premature babies, the attempt to implement the technology in adults has been largely unsuccessful.

To try and reveal why, researchers at the University of Michigan (U-M; Ann Arbor, USA) and Ecole Polytechnique (Palaiseau, France) developed a mathematical computer model that provided a three-dimensional (3D) image of exactly how SRT flowed through the lungs of patients in the three key trials that examined the technology. The first (1997) clinical study in adults showed promise, cutting mortality rate from 40% to 20%. But two larger studies in 2004 and 2011 showed no improvement in mortality, and the treatment was abandoned.

The computer model used fluid mechanical principals for 3-D modeling of the lung airway tree in both neonates and adults, showing how a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, they saw that the SRT plug deposits a coating film on the airway wall, and then splits unevenly at the bifurcation due to gravity. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity.

When the researchers applied this engineering perspective to SRT, they saw one detail that set the successful 1997 study apart; a less concentrated version of medication was used. The SRT used in the 1997 study delivered the same dose of medication as the later studies, but it was dissolved in up to four times more liquid. The additional liquid helped the medication reach the tiny air sacs in the lungs. The study was published on July 13, 2015, in Proceedings of the National Academy of Sciences of the United States of America (PNAS).

“The medication needs to work its way from the trachea to tiny air sacs deep inside the lungs to be effective. This therapy is relatively straightforward in babies but more complex in adults, mostly because adult lungs are much bigger,” said lead author professor of biomedical engineering James Grotberg, MD, PhD, of the U-M College of Engineering. “The modeling technology could be used in other types of research as well, including more precise targeting of other medications in the lungs and projecting results from animal research to humans.”

Related Links:

University of Michigan
Ecole Polytechnique


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Fixed Height Patient Trolley
GT1501
New
Oxygen Concentrator
ZH-A51

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more