Printed Surgical Tool Upgrades ACL Reconstruction
|
By HospiMedica International staff writers Posted on 17 Jan 2016 |

Image: The Pathfinder Guide system (Photo courtesy of Stratasys Direct Manufacturing).
A surgical tool manufactured using direct metal laser sintering (DMLS) printing technology could enable surgeons to better reconstruct partially or fully torn anterior cruciate ligaments (ACL).
The Pathfinder Guide system is a surgical tool that improves graft positioning during ACL reconstruction, designed so that the anchored grafts can handle a similar level of stress as a natural ACL. The major part of the system, the Pathfinder ACL Guide, is organically shaped to match the anatomy of knee, and includes an elongated, slim body section and an ergonomic handle. To achieve the necessary biocompatibility, the Pathfinder is printed with Inconel 718 material to provide the correct surface finish and oil resistance.
The majority of ACL repair surgeries are performed with the transtibial technique, which involves drilling a tunnel through the front of the tibia head, which is also the tibial attachment point for the graft. A drill is then extended through the tunnel and up to the back of the femur to create a similar tunnel for the femoral attachment. While the technique is relatively straightforward, it often results in the graft being attached to the femur off the natural attachment point, leading to biomechanical strain and increased potential for graft failure.
“The main problem is doctors are using a straight drill to create the tibia and femur attachment points for the graft, but instrumenting through the rigid tibial tunnel limits where you can get on the femur,” said Pathfinder inventor orthopedic surgeon Dana Piasecki, MD. “I realized I needed a procedure in which the drill is flexible and could be bent to follow the ligament’s normal path to impact the femur at the location and angle that anatomically mimics native ACL positioning. I then needed a tool that could be inserted into the inner knee space to grasp the flexible drill, steer it to the proper spot on the femur, and hold it during the drilling process.”
To facilitate that graft positioning, the pathfinder Guide incorporates a slotted groove for capturing and holding a 2.2-mm diameter flexible drill that can easily disengage with a simple twist of the tool, and a curvilinear head section that enables the surgeon to reference inner knee surfaces, turn and manipulate easily within the limited space, and rigidly hold position against bending and drilling forces. Different models were designed to accommodate for both left and right knees, as well as for children’s knees, which are considerably smaller.
After fused deposition modeling (FDM) design process, Dr. Piasecki turned to Stratasys Direct Manufacturing (Los Angeles, CA, USA) to fabricate the parts via DMLS, since it was the only manufacturing process that could build the intricate geometry in metal at a reasonable price for low-volume production and meet the necessary mechanical requirements. After extensive testing, the Pathfinder System was approved by the US Food and drug Administration (FDA), and has shown a 95% success rate in anchoring grafts in their native ACL locations.
“Pathfinder illustrates how 3D printing is uniquely capable of enabling breakthroughs in medical technology that otherwise would not be possible,” said John Self, project engineer at Stratasys Direct Manufacturing. “And by offering 97% cost savings over conventional manufacturing methods, 3D printing has demonstrated its business value in bringing complex, high-quality parts to market.”
Related Links:
Stratasys Direct Manufacturing
The Pathfinder Guide system is a surgical tool that improves graft positioning during ACL reconstruction, designed so that the anchored grafts can handle a similar level of stress as a natural ACL. The major part of the system, the Pathfinder ACL Guide, is organically shaped to match the anatomy of knee, and includes an elongated, slim body section and an ergonomic handle. To achieve the necessary biocompatibility, the Pathfinder is printed with Inconel 718 material to provide the correct surface finish and oil resistance.
The majority of ACL repair surgeries are performed with the transtibial technique, which involves drilling a tunnel through the front of the tibia head, which is also the tibial attachment point for the graft. A drill is then extended through the tunnel and up to the back of the femur to create a similar tunnel for the femoral attachment. While the technique is relatively straightforward, it often results in the graft being attached to the femur off the natural attachment point, leading to biomechanical strain and increased potential for graft failure.
“The main problem is doctors are using a straight drill to create the tibia and femur attachment points for the graft, but instrumenting through the rigid tibial tunnel limits where you can get on the femur,” said Pathfinder inventor orthopedic surgeon Dana Piasecki, MD. “I realized I needed a procedure in which the drill is flexible and could be bent to follow the ligament’s normal path to impact the femur at the location and angle that anatomically mimics native ACL positioning. I then needed a tool that could be inserted into the inner knee space to grasp the flexible drill, steer it to the proper spot on the femur, and hold it during the drilling process.”
To facilitate that graft positioning, the pathfinder Guide incorporates a slotted groove for capturing and holding a 2.2-mm diameter flexible drill that can easily disengage with a simple twist of the tool, and a curvilinear head section that enables the surgeon to reference inner knee surfaces, turn and manipulate easily within the limited space, and rigidly hold position against bending and drilling forces. Different models were designed to accommodate for both left and right knees, as well as for children’s knees, which are considerably smaller.
After fused deposition modeling (FDM) design process, Dr. Piasecki turned to Stratasys Direct Manufacturing (Los Angeles, CA, USA) to fabricate the parts via DMLS, since it was the only manufacturing process that could build the intricate geometry in metal at a reasonable price for low-volume production and meet the necessary mechanical requirements. After extensive testing, the Pathfinder System was approved by the US Food and drug Administration (FDA), and has shown a 95% success rate in anchoring grafts in their native ACL locations.
“Pathfinder illustrates how 3D printing is uniquely capable of enabling breakthroughs in medical technology that otherwise would not be possible,” said John Self, project engineer at Stratasys Direct Manufacturing. “And by offering 97% cost savings over conventional manufacturing methods, 3D printing has demonstrated its business value in bringing complex, high-quality parts to market.”
Related Links:
Stratasys Direct Manufacturing
Latest Surgical Techniques News
- Novel Endoscopy Technique Provides Access to Deep Lung Tumors
- New Study Findings Could Halve Number of Stent Procedures
- Breakthrough Surgical Device Redefines Hip Arthroscopy
- Automated System Enables Real-Time "Molecular Pathology" During Cancer Surgery
- Groundbreaking Procedure Combines New Treatments for Liver Tumors
- Ablation Reduces Stroke Risk Associated with Atrial Fibrillation
- Optical Tracking Method Identifies Target Areas in Robot-Assisted Neurosurgery
- General Anesthesia Improves Post-Surgery Outcomes for Acute Stroke Patients
- Drug-Coated Balloons Can Replace Stents Even in Larger Coronary Arteries
- Magnetic Kidney Stone Retrieval Device Outperforms Ureteroscopic Laser Lithotripsy
- Absorbable Skull Device Could Replace Traditional Metal Implants Used After Brain Surgery
- Magic Silicone Liquid Powered Robots Perform MIS in Narrow Cavities
- 'Lab-on-a-Scalpel' Provides Real-Time Surgical Insights for POC Diagnostics in OR
- Biodegradable Brain Implant Prevents Glioblastoma Recurrence
- Tiny 3D Printer Reconstructs Tissues During Vocal Cord Surgery
- Minimally Invasive Procedure for Aortic Valve Disease Has Similar Outcomes as Surgery
Channels
Critical Care
view channel
Biodegradable Patch Repairs Damaged Tissue After Heart Attack
A heart attack causes sudden loss of oxygen to the heart muscle, triggering cell death and a strong inflammatory response that often leads to scar formation. While scarring helps stabilize the heart, it... Read more
Magnetically Guided Microrobots to Enable Targeted Drug Delivery
Stroke affects 12 million people globally each year, often causing death or lasting disability. Current treatment relies on systemic administration of clot-dissolving drugs, which circulate throughout... Read more
Smart Nanomaterials Detect and Treat Traumatic Brain Injuries Simultaneously
Traumatic brain injury (TBI) continues to leave millions with long-term disabilities every year. After a sudden impact from a fall, collision, or accident, the brain undergoes inflammation, oxidative stress,... Read more
Earlier Blood Transfusion Could Reduce Heart Failure and Arrhythmia in Heart Disease Patients
Blood loss during or after surgery can place significant stress on people with heart disease, increasing the risk of dangerous complications. Transfusions are often delayed until hemoglobin levels fall... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
EMR-Based Tool Predicts Graft Failure After Kidney Transplant
Kidney transplantation offers patients with end-stage kidney disease longer survival and better quality of life than dialysis, yet graft failure remains a major challenge. Although a successful transplant... Read more
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







