New Imaging Method Facilitates Gall Bladder Removal
|
By HospiMedica International staff writers Posted on 21 Mar 2016 |
Real-time near-infrared fluorescence cholangiography (NIRFC) can help image the bile ducts during gallbladder removal surgeries, according to a new study.
Researchers at the University of California Los Angeles (UCLA; USA) conducted a prospective study involving 37 patients undergoing laparoscopic biliary and hepatic operations who were administered intravenous indocyanine green (ICG) for NIRFC. The patients were administered with different doses and times—ranging from 10 to 180 minutes—from ICG injection to visualization. The porta hepatis vein and biliary structures were then examined using a dedicated laparoscopic system equipped to detect NIRFC, and quantitatively analyzed using a scoring system.
The results showed that visualization of the extrahepatic biliary tract improved with increasing doses of ICG, and was also significantly better with increased time after ICG administration; quantitative measures also improved with both dose and time. The results suggest that a dose of 0.25 mg/kg administered at least 45 minutes prior to visualization is optimal for intraoperative anatomical identification of the extrahepatic biliary anatomy. The study was published on March 10, 2016, in Surgical Innovations.
“Injuries to the bile ducts, which carry bile from the liver to the intestines, are rare; but when they do occur, the outcomes can be quite serious and cause life-long consequences,” said lead author Ali Zarrinpar, MD, PhD. “Gallbladder removals are one of the most litigated cases in general surgery because of these injuries. Any technique that can reduce the rate of bile duct injury and increase the safety of the operation is good for patients and for surgeons.”
The gallbladder and liver can be hard to access and visualize when the areas around them are inflamed or surrounded by fat. Using a conventional imaging technique, in which the bile ducts are not clearly delineated, injuries to the ducts can occur. But when ICG is taken up by the liver and excreted into the bile, laparoscopic devices can detect the fluorescence in the bile ducts and superimpose that image onto a conventional white light image. The augmented image improves the surgeons' visualization, making it easier for them to identify the appropriate bile duct anatomy.
Related Links:
University of California Los Angeles
Researchers at the University of California Los Angeles (UCLA; USA) conducted a prospective study involving 37 patients undergoing laparoscopic biliary and hepatic operations who were administered intravenous indocyanine green (ICG) for NIRFC. The patients were administered with different doses and times—ranging from 10 to 180 minutes—from ICG injection to visualization. The porta hepatis vein and biliary structures were then examined using a dedicated laparoscopic system equipped to detect NIRFC, and quantitatively analyzed using a scoring system.
The results showed that visualization of the extrahepatic biliary tract improved with increasing doses of ICG, and was also significantly better with increased time after ICG administration; quantitative measures also improved with both dose and time. The results suggest that a dose of 0.25 mg/kg administered at least 45 minutes prior to visualization is optimal for intraoperative anatomical identification of the extrahepatic biliary anatomy. The study was published on March 10, 2016, in Surgical Innovations.
“Injuries to the bile ducts, which carry bile from the liver to the intestines, are rare; but when they do occur, the outcomes can be quite serious and cause life-long consequences,” said lead author Ali Zarrinpar, MD, PhD. “Gallbladder removals are one of the most litigated cases in general surgery because of these injuries. Any technique that can reduce the rate of bile duct injury and increase the safety of the operation is good for patients and for surgeons.”
The gallbladder and liver can be hard to access and visualize when the areas around them are inflamed or surrounded by fat. Using a conventional imaging technique, in which the bile ducts are not clearly delineated, injuries to the ducts can occur. But when ICG is taken up by the liver and excreted into the bile, laparoscopic devices can detect the fluorescence in the bile ducts and superimpose that image onto a conventional white light image. The augmented image improves the surgeons' visualization, making it easier for them to identify the appropriate bile duct anatomy.
Related Links:
University of California Los Angeles
Latest Surgical Techniques News
- Drug-Coated Balloons Can Replace Stents Even in Larger Coronary Arteries
- Magnetic Kidney Stone Retrieval Device Outperforms Ureteroscopic Laser Lithotripsy
- Absorbable Skull Device Could Replace Traditional Metal Implants Used After Brain Surgery
- Magic Silicone Liquid Powered Robots Perform MIS in Narrow Cavities
- 'Lab-on-a-Scalpel' Provides Real-Time Surgical Insights for POC Diagnostics in OR
- Biodegradable Brain Implant Prevents Glioblastoma Recurrence
- Tiny 3D Printer Reconstructs Tissues During Vocal Cord Surgery
- Minimally Invasive Procedure for Aortic Valve Disease Has Similar Outcomes as Surgery
- Safer Hip Implant Design Prevents Early Femoral Fractures
- New Nanomaterial Improves Laser Lithotripsy for Removing Kidney Stones
- Ultraflexible Neurovascular Microcatheter Delivers Therapies to Tiniest Blood Vessels

- Magnetic Soft Robotic Valve Provides Minimally Invasive Intervention for Acid Reflux
- Wireless Metamaterial Spinal Implants Can Feel, Heal and Communicate
- Major Study Examines Endoscopies that Fail to Detect Esophageal Cancer
- Robotic Assistant Delivers Ultra-Precision Injections with Rapid Setup Times
- Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Channels
Critical Care
view channel
Sweat-Powered Sticker Turns Drinking Cup into Health Sensor
Micronutrient deficiencies affect millions worldwide, yet checking vitamin C levels still requires blood draws, lab equipment, and high costs that prevent regular monitoring. Most people only get annual... Read more
Coronary Artery Stenosis Could Protect Patients from Pulmonary Embolism Effects
Acute pulmonary embolism (PE) occurs when blood clots block vessels carrying deoxygenated blood from the heart to the lungs, triggering a sudden rise in pressure against the right ventricle and risking... Read moreSurgical Techniques
view channel
Drug-Coated Balloons Can Replace Stents Even in Larger Coronary Arteries
Narrowed or blocked arteries pose a major global health burden, often leading to heart attacks, heart failure, or stroke when blood flow becomes compromised. Traditional balloon angioplasty can reopen... Read more
Magnetic Kidney Stone Retrieval Device Outperforms Ureteroscopic Laser Lithotripsy
Kidney stone disease affects millions worldwide and often requires ureteroscopic laser lithotripsy, yet fragment removal remains inefficient. Many patients are left with residual pieces that can cause... Read more
Absorbable Skull Device Could Replace Traditional Metal Implants Used After Brain Surgery
Closing the skull safely after neurosurgery remains a major clinical challenge, as traditional metal or semi-absorbable fixation devices can interfere with imaging, degrade unpredictably, or persist long... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more







