We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Sensing Tool Measures Lung Function over the Phone

By HospiMedica International staff writers
Posted on 12 May 2016
Print article
Image: A person using SpiroCall on a phone with and without a SpiroCall whistle (Photo courtesy of the University of Washington).
Image: A person using SpiroCall on a phone with and without a SpiroCall whistle (Photo courtesy of the University of Washington).
A new device allows lung function to be assessed from any phone, using the voice channel to transmit the sound of the spirometry effort.

Developed by researchers at the University of Washington (UW; Seattle, USA), the SpiroCall is a service that transmits an audio signal using the standard voice telephony channel. A server receives the data of degraded audio quality, calculates clinically relevant lung function measures using multiple regression algorithms, and reports the results using an audio message, text message, or both. The researchers also found several significant usability challenges more difficult to mitigate, such as how a user holds the phone, the distance from the user’s mouth to the phone, and how wide a user opens their mouth.

The researchers therefore designed a simple, low-cost 3D printed whistle accessory, which generates vortices as the user exhales through it, changing its resonating pitch in proportion to the flow rate. The whistle does not have any moving parts and is as simple as any spirometer mouthpiece. Advantages of the whistle include more consistent acoustic properties, audible sound at lower flow rates, removing the effect of distance from the user’s mouth, and precisely controlling mouth shape and phone orientation.

In a study to investigate viability of the call-in service approach with and without the whistle, the researchers evaluated SpiroCall in 50 patients, comparing it to approved spirometers and evaluating the effect of using the voice communication channel on performance. Each patient performed spirometry efforts with and without the whistle on two different phones, recording the audio through the cell phone network, and two smartphones recording the audio locally through an app. Participants also used two different sizes of vortex whistles to determine if different sizes work better for different individuals.

The results show that without a whistle, SpiroCall has a mean error of 7.2% for the four major clinically relevant lung function measures; for forced expiratory volume percentage (FEV1%), the mean error is 6.2%. With a whistle, SpiroCall has a mean error of 8.3% for the four measures, and 7.3% for FEV1%. Although the whistle shows higher average error in lung function estimates, it is more consistent for people with lower lung function and produces fewer overestimations. The study was presented at the Association for Computing Machinery conference, held during May 2016 in San Jose (CA, USA).

"People have to manage chronic lung diseases for their entire lives, so there's a real need to have a device that allows patients to accurately monitor their condition at home without having to constantly visit a medical clinic,” said lead author Mayank Goel, MSc, a computer science and engineering doctoral student. “Because this project has been around for four years, we've been able to talk to a lot of patients about how they're able to use the technology, and that feedback has really helped us make smart improvement.”

Related Links:
University of Washington

New
Gold Member
X-Ray QA Meter
T3 AD Pro
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
5-Drawer Tall Anesthesia Cart
UTGKU-33669-DKB
New
Endoscopic Vessel Harvesting
VirtuoSaph Plus

Print article
Radcal

Channels

Surgical Techniques

view channel
Image: Conceptual schematic showing microgrippers (µ-grippers) operating as biopsy tools in the upper urinary tract (Photo courtesy of Wangqu Liu, Yan Wan/Gracias Lab, Johns Hopkins University)

Microgrippers For Miniature Biopsies to Create New Cancer Diagnostic Screening Paradigm

The standard diagnosis of upper urinary tract cancers typically involves the removal of suspicious tissue using forceps, a procedure that is technically challenging and samples only a single region of the organ.... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more