Increased Diabetes Prevalence Due to Medical Advances
By HospiMedica International staff writers Posted on 17 May 2016 |
A new study has concluded that the global increase in type 1 diabetes (T1D) mellitus is directly linked to reduced natural selection resulting from improved medical care.
Researchers at the University of Adelaide (UA; Australia) and the University of Zurich (UZH; Switzerland) examined the prevalence of T1D in 118 countries and concurrent changes in life expectancy from 1950 to 2010 to test correlation of T1D to reduced natural selection, as measured by the Biological State Index. To do so, they first obtain country-specific estimates of T1D prevalence, life expectancy, obesity prevalence rate, urbanization rates, per capita sugars consumption, and per capita gross domestic product (GDP).
The data obtained were then matched to T1D prevalence in all the countries, which were also grouped to study associations in different geographical regions. After applying the Biological State Index to the data, they found that the rapid worldwide increase in T1D over the last few decades was directly linked with increases in human life expectancy, especially in Western countries, and therefore a reduction in natural selection. The study was published on March 2, 2106, in BMJ Open Diabetes Research & Care.
“The current prevailing paradigm on the increasing prevalence of T1D is that environmental pressures are now able to trigger genotypes. Currently, medical gene intervention in modern medicine at this stage cannot remove T1D genes, and eugenics can offer no direction due to ethics issue,” concluded study co-author Wen-Peng You, PhD, of UA. “Study of T1D epidemiology based on prevalence/incidence T1D data of all age groups has become imperative, as it may offer optimal solution to address, or at least slow down, T1D genetic load increases in different populations.”
“Natural selection is one of the major evolutionary forces that inform changes in our genes, across populations and over generations. This is the first major disease we have shown that is accumulating due to a relaxation of natural selection over time,” said study co-author Professor Maciej Henneberg, PhD, of UA and UZH. “It's unlikely this situation will ever be reversed, meaning that in order to overcome the problems associated with type 1 diabetes for our population, some form of gene therapy to repair the faulty genes may need to be considered.”
Natural selection, one of the basic mechanisms of evolution, is the differential survival and fertility of individuals due to differences in phenotype that reflect genetic differences. In modern society, natural selection still acts on all members of a population, selecting those that have an increased reproductive success due to survival and/or fertility. The Biological State Index takes into account potential loss of reproductive success by dying at an earlier age. The effect of natural selection on contemporary populations is declining due to modern medicine.
Related Links:
University of Adelaide
University of Zurich
Researchers at the University of Adelaide (UA; Australia) and the University of Zurich (UZH; Switzerland) examined the prevalence of T1D in 118 countries and concurrent changes in life expectancy from 1950 to 2010 to test correlation of T1D to reduced natural selection, as measured by the Biological State Index. To do so, they first obtain country-specific estimates of T1D prevalence, life expectancy, obesity prevalence rate, urbanization rates, per capita sugars consumption, and per capita gross domestic product (GDP).
The data obtained were then matched to T1D prevalence in all the countries, which were also grouped to study associations in different geographical regions. After applying the Biological State Index to the data, they found that the rapid worldwide increase in T1D over the last few decades was directly linked with increases in human life expectancy, especially in Western countries, and therefore a reduction in natural selection. The study was published on March 2, 2106, in BMJ Open Diabetes Research & Care.
“The current prevailing paradigm on the increasing prevalence of T1D is that environmental pressures are now able to trigger genotypes. Currently, medical gene intervention in modern medicine at this stage cannot remove T1D genes, and eugenics can offer no direction due to ethics issue,” concluded study co-author Wen-Peng You, PhD, of UA. “Study of T1D epidemiology based on prevalence/incidence T1D data of all age groups has become imperative, as it may offer optimal solution to address, or at least slow down, T1D genetic load increases in different populations.”
“Natural selection is one of the major evolutionary forces that inform changes in our genes, across populations and over generations. This is the first major disease we have shown that is accumulating due to a relaxation of natural selection over time,” said study co-author Professor Maciej Henneberg, PhD, of UA and UZH. “It's unlikely this situation will ever be reversed, meaning that in order to overcome the problems associated with type 1 diabetes for our population, some form of gene therapy to repair the faulty genes may need to be considered.”
Natural selection, one of the basic mechanisms of evolution, is the differential survival and fertility of individuals due to differences in phenotype that reflect genetic differences. In modern society, natural selection still acts on all members of a population, selecting those that have an increased reproductive success due to survival and/or fertility. The Biological State Index takes into account potential loss of reproductive success by dying at an earlier age. The effect of natural selection on contemporary populations is declining due to modern medicine.
Related Links:
University of Adelaide
University of Zurich
Latest Critical Care News
- Monitoring Airborne Fungal Spores Could Help Predict COVID-19 & Flu Surges
- New System Measures Blood Sodium Without Needles
- Sleep Data from Wearable Device May Help Predict Preterm Birth
- AI Tool Interprets Echocardiograms in Minutes
- Electrochemical Catheter Hub Prevents Bloodstream Infections
- Noninvasive Double Microbubble Delivery Approach Marks Breakthrough in Brain Cancer Treatment
- Self-Healing Skin-Like Material to Find Applications in Health Monitoring, Surgery and Implants
- Highly-Sensitive Electronic Skin Allows Robots to Feel Heat, Pain and Pressure
- AI-Powered Wearable Sensor Predicts Labor Onset in Pregnant Women
- Implantable Device to Redefine Continuous Glucose Monitoring
- Smart Microgel Could Repair and Replace Damaged Organs
- Smart Breath Tracker Wristband to Revolutionize Respiratory Care
- Stronger Blood Clot Prevention Measures Needed After Leg Artery Procedures in High-Risk Patients
- AI Tool Catches Missed Illnesses Associated with Inflammatory Bowel Disease
- First Ever Device Diagnoses Life-Threatening Complication Post-Cardiac Surgery
- Contactless Vital Sign Monitoring Device Measures Respiratory Rate Through Smartphones
Channels
Surgical Techniques
view channel
First-Ever Technology Makes Blood Translucent During Surgery
No matter the discipline or scale, bleeding is a regular part of any surgery and can create several challenges. In operating room imaging, seeing through blood in real-time during a surgery has been a... Read more
Tibia Nailing System with Novel Side-Specific Nails to Revolutionize Fracture Surgery
Smith+Nephew (Hull, UK;) has launched its new TRIGEN MAX Tibia Nailing System for stable and unstable fractures of the tibia, including the shaft. It is the only system to now offer trauma surgeons the... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies
A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more